• Title/Summary/Keyword: the sliding mode

Search Result 1,572, Processing Time 0.032 seconds

Dual Stage Servo Controller for Image Tracking System (듀얼 스테이지 서보 시스템을 이용한 영상 추적장치의 안정화 제어)

  • Choi Y.J.;Kang M.S.;Ryu K.H.;Lee S.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.45-46
    • /
    • 2006
  • In this paper, a dual stage servo mechanism has been developed for image tracking system to improve transient control performances such as small rise time, small overshoot, small settling time, etc. A secondary stage, a platform, actuated by a pair of electro-magnets is mounted on a conventional elevation gimbal. In this mechanism, the gimbal provides large range but slow motion and the platform provides small range but fast positioning. A sliding mode control is applied to the platform positioning to attain robust performances and stability in the presence of the disturbance related to dynamic coupling of the gimbal and the platform. Results from experiments illustrate that the suggested dual stage mechanism controlled by the sliding mode control is effective in improving transient responses and attenuating the disturbance related with dynamic coupling.

  • PDF

Cutting Force Regulation in Milling Process Using Sliding Mode Control (슬라이딩 모드 제어기를 이용한 밀링공정의 절삭력 제어)

  • Lee, Sang-Jo;Lee, Yong-Seok;Go, Jeong-Han
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.8
    • /
    • pp.1173-1182
    • /
    • 2001
  • Recent noticeable advances of CNC machine tools have considerably improved productivity and precision in manufacturing processes. However, in the respect of productivity some defects still remain because selection of machining conditions entirely depends on the experiences of programmers. Usually, machining conditions such as feed rate and spindle speed have been selected conservatively by considering the worst cases, and it has brought the loss of machining efficiency. Thus, the improvement of cutting force controller has been done to regulate cutting force constantly and to maximize feedrate simultaneously in case that machining conditions change variously. In this study, sliding mode control with boundary layer is applied to milling process for cutting force regulation and in a commercial CNC machining center data transfer between PC and PMC (programmable machine controller) of CNC machine is done using a standard interface method. And in the cutting force measurement, an indirect cutting force measuring system using current signal of AC servo is adopted in order not to use high-priced equipment like tool dynamometer. The purpose of this study is to maximize the productivity in milling process, thus its results can be applied to cases such as rough cutting process.

Integrated Sliding-Mode Sensorless Driver with Pre-driver and Current Sensing Circuit for Accurate Speed Control of PMSM

  • Heo, Sewan;Oh, Jimin;Kim, Minki;Suk, Jung-Hee;Yang, Yil Suk;Park, Ki-Tae;Kim, Jinsung
    • ETRI Journal
    • /
    • v.37 no.6
    • /
    • pp.1154-1164
    • /
    • 2015
  • This paper proposes a fully sensorless driver for a permanent magnet synchronous motor (PMSM) integrated with a digital motor controller and an analog pre-driver, including sensing circuits and estimators. In the motor controller, a position estimator estimates the back electromotive force and rotor position using a sliding-mode observer. In the pre-driver, drivers for the power devices are designed with a level shifter and isolation technique. In addition, a current sensing circuit measures a three-phase current. All of these circuits are integrated in a single chip such that the driver achieves control of the speed with high accuracy. Using an IC fabricated using a $0.18{\mu}m$ BCDMOS process, the performance was verified experimentally. The driver showed stable operation in spite of the variation in speed and load, a similar efficiency near 1% compared to a commercial driver, a low speed error of about 0.1%, and therefore good performance for the PMSM drive.

Development of a RLS based Adaptive Sliding Mode Observer for Unknown Fault Reconstruction of Longitudinal Autonomous Driving (종방향 자율주행의 미지 고장 재건을 위한 순환 최소 자승 기반 적응형 슬라이딩 모드 관측기 개발)

  • Oh, Sechan;Song, Taejun;Lee, Jongmin;Oh, Kwangseok;Yi, Kyongsu
    • Journal of Auto-vehicle Safety Association
    • /
    • v.13 no.1
    • /
    • pp.14-25
    • /
    • 2021
  • This paper presents a RLS based adaptive sliding mode observer (A-SMO) for unknown fault reconstruction in longitudinal autonomous driving. Securing the functional safety of autonomous vehicles from unexpected faults of sensors is essential for avoidance of fatal accidents. Because the magnitude and type of the faults cannot be known exactly, the RLS based A-SMO for unknown acceleration fault reconstruction has been designed with relationship function in this study. It is assumed that longitudinal acceleration of preceding vehicle can be obtained by using the V2V (Vehicle to Vehicle) communication. The kinematic model that represents relative relation between subject and preceding vehicles has been used for fault reconstruction. In order to reconstruct fault signal in acceleration, the magnitude of the injection term has been adjusted by adaptation rule designed based on MIT rule. The proposed A-SMO in this study was developed in Matlab/Simulink environment. Performance evaluation has been conducted using the commercial software (CarMaker) with car-following scenario and evaluation results show that maximum reconstruction error ratios exist within range of ±10%.

Robust Discrete-Time Sliding Mode Control of Vehicle Steering System with Uncertainty (불확실성을 포함한 차량 조향장치의 강인 이산시간 슬라이딩 모드 제어)

  • Kim, Han-Me;Kim, Doo-Hyung;Park, Kyoung-Taik
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.18 no.4
    • /
    • pp.295-301
    • /
    • 2012
  • This paper deals with the design of robust DSMC (Discrete-Time Sliding Mode Control) scheme in order to overcome system uncertainty in steering system with mechanically joined structure. The proposed control scheme is one of robust control schemes based on system dynamics. Therefore, system dynamics required is not obtained from physical law but SCM (Signal Compression Method) through experiment in order to avoid complicate mathematical development and save time. However, SCM has a shortcoming that is the limitation of with $2^{nd}$ order linear model which does not include the dynamic of high-frequency band. Thus, considering system uncertainty, DSMC is designed. In addition, to reduce the chattering problem of DSMC, DSMC is derived from the reaching law and the Lyapunov stability condition. It is found that the proposed control scheme has robustness in spite of the perturbation of system uncertainty through computer simulation.

Position control of an Electro-Hydrostatic Rotary Actuator using adaptive PID control (EHRA의 위치제어를 위한 적응 PID 제어기 설계)

  • Ha, Tae Wook;Jun, Gi Ho;Nguyen, Minh Tri;Han, Sung Min;Shin, Jung Woo;Ahn, Kyoung Kwan
    • Journal of Drive and Control
    • /
    • v.14 no.4
    • /
    • pp.37-44
    • /
    • 2017
  • This paper introduces a control algorithm for trajectory control of an electro-hydrostatic rotary actuator. A key feature of this paper is that an adaptive PID based on sliding mode is used to control the nonlinearity and uncertainty factor of single input/output system. Accurate knowledge of rotary actuator angle can result in high-performance and efficiency of electro hydraulic system. First, the position control is formulated using the adaptive PID with sliding mode technique and uncertainties in the hydraulic system. Second, the controller can update the PID gains on-line based on error caused by external disturbance and uncertain factors in the system. Finally, three experimental cases were studied to evaluate the proposed control method.

The Output Voltage Control of Buck Type DC-DC Converter Using Sliding Mode and Neural Controller (슬라이딩 모드와 Neural network 제어기를 이용한 Buck type DC-DC 컨버터의 출력전압제어)

  • Hwang, Gye-Ho;Nam, Seung-Sik;Kim, Dong-Hee;Bae, Sang-June
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.3
    • /
    • pp.95-100
    • /
    • 2004
  • A control alogorithm using sliding mode and neural network for Buck type DC-DC converter is presented. Also, we conform a rightness the proposal method by comparing a theoretical values and experimental values obtained from experiment using DSP(digital signal processor). Performance comparisons made with the general hysteresis controller clearly bring out the superior performance of the proposal neural network controller. This paper will be applied to other power conversion system using the proposal neural network controller.

LVRT control of Grid-Connected Wind Turbine Using Sliding-Mode Based Direct Power Control (슬라이딩 모드 기반의 직접전력제어를 이용한 계통연계형 풍력발전 시스템의 LVRT 제어)

  • Jeong, Hae-Gwang;Lee, Kyo-Beum
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.396-404
    • /
    • 2011
  • This paper proposes a performance improvement of a grid-connected wind turbine using sliding-mode based direct power control under an unbalanced grid fault. The proposed control method has some advantages for grid connected control. At first, it doesn't need the synchronous phase angle of the grid voltage. It has also fast dynamic characteristics compared with a conventional current controller. In addition, it is suitable for an unbalance compensation control. The effectiveness and robustness of the proposed algorithm are verified by simulations and experiments.

Maximum Control Force for Sliding Mode Controller with Saturation Problem (포화현상을 고려한 슬라이딩 모드제어기의 최대제어력 산정)

  • 이상현;민경원;김홍진;이영철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.1-8
    • /
    • 2004
  • Sliding mode control (SMC), which is one of active control algorithms showing remarkable control performance, requires the excessive control force for control of seismically excited civil structures. Therefore, controller saturation should be considered in design of SMC. In this study, a method for determining the maximum control force is developed in terms of the fraction of the lateral restoring force using a design response spectrum. Numerical analyses of MDOF structures with one or multiple control devices verify the effectiveness of the proposed method for the control of seismically excited civil structures with saturation problem.

Robust $H{\infty}$ Control Using Sliding Mode and LMI (슬라이딩모드와 LMI를 이용한 강인 $H{\infty}$ 제어)

  • Kim, Su-Jin;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Kyun;Kwak, Gun-Pyong;Yoon, Tae-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.2
    • /
    • pp.316-321
    • /
    • 2007
  • [ $H{\infty}$ ] controller, which shows robustness for disturbances and noises, can not be used in the case of uncertain system parameters. Even if the $H{\infty}$ controller can be designed for the parameter uncertain system, its performance can be deteriorated. Therefore, in this paper, the robustness of $H{\infty}$ controller is improved by using the SMC(Sliding Mode Control). The LMI based $H{\infty}$ controller is designed first and then SMC controller is added.