• Title/Summary/Keyword: the sliding mode

Search Result 1,572, Processing Time 0.05 seconds

Improvement of Middle or High Speed Restart Performance Using Hall Sensor for the Sensorlessly Controlled IPMSM Fan motor (센서리스 제어방식 IPMSM 팬 모터의 홀센서를 이용한 중·고속 재기동 성능개선)

  • Lee, J.H.;Jung, Y.S.
    • Journal of Power System Engineering
    • /
    • v.16 no.6
    • /
    • pp.73-78
    • /
    • 2012
  • This paper investigates the restart performance of sensorlessly controlled IPMSM Fan motor free-running in middle or high speed range just after inverter power off. There could be some difficulties to extract exact position information by using conventional sensorless control for restarting the motor because of stopped inverter operation. To solve this problem, we proposes to use low cost hall sensor. Using a hall sensor with SMO (Sliding Mode Observer) give us a solution to facilitate rotor position information extraction. The algorithm in this paper shows a certain way of the restarting method.

Force-feedback Control of an Electrorheological Haptic Device in MIS Virtual Environment (전기유변 유체를 이용한 햅틱 마스터와 가상의 최소침습수술 환경과의 연동제어)

  • Kang, Pil-Soon;Han, Young-Min;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.16 no.12 s.117
    • /
    • pp.1286-1293
    • /
    • 2006
  • This paper presents force-feedback control performance of a haptic device in virtual environment of minimally invasive surgery(MIS). As a first step, based on an electrorheological (ER) fluid and spherical geometry, a new type of master device is developed and integrated with a virtual environment of MIS such as a surgical tool and human organ. The virtual object is then mathematically formulated by adopting the shape retaining chain linked(S-chain) model. After evaluating reflection force, computational time, and compatibility with real time control, the virtual environment of MIS is formulated by interactivity with the ER haptic device in real space. Tracking control performances for virtual force trajectory are presented in time domain.

Design of a Nonlinear Control System for Continuously Variable Transmission (무단 변속기를 위한 비선형 제어 시스템의 설계)

  • Park, Seong-Wook;Seo, Bo-Hyeok
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2348-2351
    • /
    • 2000
  • In order to operate SI(Spark Ignition) engine at the optimal fuel efficiency, it is necessary to use continuously variable transmission(CVT) which has more excellent fuel consumption property than transmissions of gear box types commonly used. This study introduces new type of nonlinear control approach to control precisely CVT including nonlinear characteristics. The nonlinear controller is basically composed of input-state feedback linearization, which can cancel the nonlinearities included in CVT on specific controllable area, and sliding-mode control. In this paper, good control performance of contrtol system with the nonlinear controller is confirmed with computer simulations.

  • PDF

Path Control with Energy-Saving Load-Sensing for a Cylinder-Load System Using Speed-Controlled Fixed Displacement Pump (속도제어-정용량 펌프를 사용하는 실린더-부하계의 에너지절약-부하감지형 경로제어)

  • Cho, S.H.
    • Transactions of The Korea Fluid Power Systems Society
    • /
    • v.6 no.3
    • /
    • pp.16-22
    • /
    • 2009
  • This paper deals with the issue of robust position tracking control and energy-saving control for a valve-controlled cylinder system using speed-controlled fixed displacement pump. The whole feedback control system is composed of a pair of interconnected subsystems, that is, valve-controlled cylinder system and load-sensing control system. From experiments it is shown that position tracking control in the load sensing control system can accomplish significant reduction in input energy to pump comparing to a conventional valve-controlled cylinder system, while exhibiting the same position tracking control accuracy.

  • PDF

Comparison Among Yaw and Roll Motion Controllers for Rollover Prevention (차량 전복 방지를 위한 롤 및 요 운동 제어기의 성능 비교)

  • Yim, Seongjin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.701-705
    • /
    • 2014
  • This article presents a comparison among several yaw and roll motion controllers for vehicle rollover prevention. In the previous research, yaw and roll motion controllers can be independently designed for rollover prevention. Following this idea, several yaw and roll motion controllers are designed and compared in terms of rollover prevention. For the yaw motion control, PID, LQR, SMC (Sliding Mode Control) and TDC (Time-Delay Control) are adopted. For the roll motion control, LQR, LQ SOF (Static Output Feedback) control, PID, and SMC are adopted. To compare the performance of each controller, simulation is performed on a vehicle simulation package, CarSim$^{(R)}$. From simulation, TDC and LQ SOF are the best for yaw and roll motion control, respectively.

Control of Z-Source MSVPWM Inverter for DGS (DGS용 Z-원 MSVPWM 인버터 제어)

  • Park, Young-San;Bae, Cherl-O;Nam, Taek-Kun
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2006.06a
    • /
    • pp.277-278
    • /
    • 2006
  • This paper presents circuit models and control algorithms of distributed generation system(DGS) which consists of Z-type converter and PWM inverter Z-type converter which employs both the L and C passive components and shoot-through zero vectors instead of the conventional DC/DC converter in order to step up DC-link voltage. Discrete time sliding mode control with the asymptotic observer is used for current control.

  • PDF

Attitude SCAS Design for 40% Scaled Smart UAV (40% 축소형 스마트 무인기 비행제어기 설계)

  • Lee, Jang-Ho;Hwang, Tai-Won;Choi, Ji-Young;Kim, Eung-Tai
    • Aerospace Engineering and Technology
    • /
    • v.6 no.2
    • /
    • pp.1-7
    • /
    • 2007
  • The control design for attitude and yaw rate of 40 % scaled SMART UA Vhas been performed. Analytic selection method for a control gain is proposed to meet the design specification of desired time response considering stability margin. The sliding mode attitude controller is also proposed and compared with the simulation results of a linear controller. Additionally, a velocity and height tracking controller is devised to prepar for the flight test.

  • PDF

Complex Planetary Gear Train for a Plug type Passenger Door (복합유성기어장치를 적용한 플러그 방식 출입문의 변속장치)

  • 김연수;홍재성;박성혁;백남욱;이병송
    • Proceedings of the KSR Conference
    • /
    • 2001.05a
    • /
    • pp.170-177
    • /
    • 2001
  • Since plug type passenger door has two motion modes, power transmission unit must be capable of plug-in or plug-out, and sliding mode. Complex planetary gear train is proposed, which is composed of two 2K-H, I type planetary gear units. For the proposed complex planetary gear train, ranges of addendum modification coefficients which would not lead to interferences is analyzed, and optimal addendum modification coefficients among these ranges which generate the maximum efficiency are presented. Based on the interference, efficiency and torque ratio analysis results, complex planetary new train is designed and manufactured.

  • PDF

A Study on the Stabilization Control of Nonlinear Systems using RVEGA SMC (RVEGA SMC를 이용한 비선형 시스템의 안정화 제어)

  • Kim, Tae-Woo;Jo, Hyun-Woo;Song, Ho-Shin;Lee, Oh-Keol;Lee, Joon-Tark
    • Proceedings of the KIEE Conference
    • /
    • 2000.07d
    • /
    • pp.2624-2626
    • /
    • 2000
  • The stabilization controls of coupled tank system and ball-beam system are difficult control tasks because of their high order time delay, nonlinearity and structural unstability. Fuhermore, a series of classical methods such as a conventional PID and a full state feedback controller(FSFC) based on the local linearizations have narrow stabilizable regions. Therefore, in this paper, in order to stabilize two representative nonlinear system mentioned above, a Sliding Mode Controller based on a Real Variable Elitist Genetic Algorithm(RVEGA SMC) was proposed.

  • PDF

Takagi-Sugeno Fuzzy Controller for Efficiency Optimization of Induction Motor with Model Uncertainties (Takagi-Sugeno 퍼지 제어기를 이용한 불확실성을 포함한 유도전동기의 효율 최적화)

  • Lee, Sun-Young;Yang, Hai-Won
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1646_1647
    • /
    • 2009
  • In this paper, Takagi-Sugeno(T-S) fuzzy controller and search method are developed for efficiency optimization of induction motors(IMs). The proposed control scheme consists of efficiency controller and adaptive backstepping controller. A search controller for which information of input of T-S fuzzy controller is included in efficiency controller that uses a direct vector controlled induction motor. A sliding mode observer is designed to estimate rotor flux and an adaptive backstepping controller is used to control of speed of IMs. Simulation results are presented to validate the proposed controller.

  • PDF