• Title/Summary/Keyword: the shortest paths

Search Result 198, Processing Time 0.026 seconds

A New Algorithm for K Shortest Paths Problem (복수최단경로의 새로운 최적해법)

  • 장병만
    • Journal of the Korean Operations Research and Management Science Society
    • /
    • v.26 no.3
    • /
    • pp.79-94
    • /
    • 2001
  • This paper presents a new algorithm for the K shortest paths Problem which develops initial K shortest paths, and repeat to expose hidden shortest paths with dual approach and to replace the longest path in the present K paths. The initial solution comprises K shortest paths among shortest paths to traverse each arc in a Double Shortest Arborescence which is made from bidirectional Dijkstra algorithm. When a crossing node that have two or more inward arcs is found at least three time by turns in this K shortest paths, there may be some hidden paths which are shorter than present k-th path. To expose a hidden shortest path, one inward arc of this crossing node is chose by means of minimum detouring distance calculated with dual variables, and then the hidden shortest path is exposed with joining a detouring subpath from source to this inward arc and a spur of a feasible path from this crossing node to sink. If this exposed path is shorter than the k-th path, the exposed path replaces the k-th path. This algorithm requires worst case time complexity of O(Kn$^2$), and O(n$^2$) in the case k$\leq$3.

  • PDF

Determination of the Shortest Transportation Path in Wartime (전시 최단수송경로 선정)

  • Yun Jong-Ok;Ha Seok-Tae
    • Journal of the military operations research society of Korea
    • /
    • v.17 no.2
    • /
    • pp.72-89
    • /
    • 1991
  • In transportation network problems, it is often desirable to select multiple number of the shortect paths. On problems of finding these paths, algorithms have been developed to choose single shortest path, k-shortest paths and k-shortest paths via p-specified nodes in a network. These problems consider the time as the main factor. In wartime, we must consider availability as well as time to determine the shortest transportation path, since we must take into account enemy's threat. Therefore, this paper addresses the problem of finding the shortest transportation path considering both time and availability. To accomplish the objective of this study, values of k-shortest paths are computed using the algorithm for finding the k-shortest paths. Then availabilties of those paths are computed through simulation considering factors such as rates of suffering attack, damage and repair rates of the paths. An optimal path is selected using any one of the four decision rules that combine the value and availability of a path.

  • PDF

A Study on New Algorithm for K Shortest Paths Problem (복수최단경로의 새로운 해법 연구)

  • Chang ByungMan
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2002.05a
    • /
    • pp.8-14
    • /
    • 2002
  • This article presents a new algorithm for the K Shortest Paths Problem which develops initial K shortest paths, and repeal to expose hidden shortest paths with dual approach and to replace the longest path in the present K paths. The initial solution which comprises K shortest paths among shortest paths to traverse each arc is made from bidirectional Dijkstra algorithm. When a crossing node that have two or more inward arcs is found at least three time by turns in this K shortest paths, one inward arc of this crossing node, which has minimum detouring distance, is chosen, and a new path is exposed with joining a detouring subpath from source to this inward arc and a spur of a feasible path from this crossing node to sink. This algorithm, requires worst case time complexity of $O(Kn^2),\;and\;O(n^2)$ in the case $K{\leq}3$.

  • PDF

A Study on a new Algorithm for K Shortest Paths Problem (복수 최단 경로의 새로운 해법에 관한 연구)

  • Chang, Byung-Man
    • Korean Management Science Review
    • /
    • v.25 no.2
    • /
    • pp.81-88
    • /
    • 2008
  • This paper presents a new algorithm for the K shortest paths problem in a network. After a shortest path is produced with Dijkstra algorithm. detouring paths through inward arcs to every vertex of the shortest path are generated. A length of a detouring path is the sum of both the length of the inward arc and the difference between the shortest distance from the origin to the head vertex and that to the tail vertex. K-1 shorter paths are selected among the detouring paths and put into the set of K paths. Then detouring paths through inward arcs to every vertex of the second shortest path are generated. If there is a shorter path than the current Kth path in the set. this path is placed in the set and the Kth path is removed from the set, and the paths in the set is rearranged in the ascending order of lengths. This procedure of generating the detouring paths and rearranging the set is repeated until the $K^{th}-1$ path of the set is obtained. The computational results for networks with about 1,000,000 nodes and 2,700,000 arcs show that this algorithm can be applied to a problem of generating the detouring paths in the metropolitan traffic networks.

A Study on the New Algorithm for Shortest Paths Problem (복수 최단 경로 문제의 새로운 해법 연구)

  • Chang, Byung-Man
    • Korean Management Science Review
    • /
    • v.15 no.2
    • /
    • pp.229-237
    • /
    • 1998
  • This paper presents a new algorithm for the K Shortest Paths Problem which is developed with a Double Shortest Arborescence and an inward arc breaking method. A Double Shortest Arborescence is made from merging a forward shortest arborescence and a backward one with Dijkstra algorithm. and shows us information about each shorter path to traverse each arc. Then K shorter paths are selected in ascending order of the length of each short path to traverse each arc, and some paths of the K shorter paths need to be replaced with some hidden shorter paths in order to get the optimal paths. And if the cross nodes which have more than 2 inward arcs are found at least three times in K shorter path, the first inward arc of the shorter than the Kth shorter path, the exposed path replaces the Kth shorter path. This procedure is repeated until cross nodes are not found in K shorter paths, and then the K shortest paths problem is solved exactly. This algorithm are computed with complexity o($n^3$) and especially O($n^2$) in the case K=3.

  • PDF

AN OPTIMAL PARALLEL ALGORITHM FOR SOLVING ALL-PAIRS SHORTEST PATHS PROBLEM ON CIRCULAR-ARC GRAPHS

  • SAHA ANITA;PAL MADHUMANGAL;PAL TAPAN K.
    • Journal of applied mathematics & informatics
    • /
    • v.17 no.1_2_3
    • /
    • pp.1-23
    • /
    • 2005
  • The shortest-paths problem is a fundamental problem in graph theory and finds diverse applications in various fields. This is why shortest path algorithms have been designed more thoroughly than any other algorithm in graph theory. A large number of optimization problems are mathematically equivalent to the problem of finding shortest paths in a graph. The shortest-path between a pair of vertices is defined as the path with shortest length between the pair of vertices. The shortest path from one vertex to another often gives the best way to route a message between the vertices. This paper presents an $O(n^2)$ time sequential algorithm and an $O(n^2/p+logn)$ time parallel algorithm on EREW PRAM model for solving all pairs shortest paths problem on circular-arc graphs, where p and n represent respectively the number of processors and the number of vertices of the circular-arc graph.

A Study on a New Algorithm for K Shortest Detour Path Problem in a Directed Network (유방향의 복수 최단 우회 경로 새로운 해법 연구)

  • Chang, Byung-Man
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2006.11a
    • /
    • pp.60-66
    • /
    • 2006
  • This paper presents a new algorithm for the K shortest path problem in a directed network. After a shortest path is produced with Dijkstra algorithm, detouring paths through inward arcs to every vertex of the shortest path are generated. A length of a detouring path is the sum of both the length of the inward arc and the difference between the shortest distance from the origin to the head vertex and that to the tail vertex. K-1 shorter paths are selected among the detouring paths and put into the set of K paths. Then detouring paths through inward arcs to every vertex of the second shortest path are generated. If there is a shorter path than the current Kth path in the set, this path is placed in the set and the Kth path is removed from the set, and the paths in the set is rearranged in the ascending order of lengths. This procedure of generating the detouring paths and rearranging the set is repeated for the K-1 st path of the set. This algorithm can be applied to a problem of generating the detouring paths in the navigation system for ITS and also for vehicle routing problems.

  • PDF

A Study on the K Shortest Paths Algorithm in a Transportation Network (Using Ordered Heap Tree) (교통망 분석에서 K경로탐색 알고리즘에 관한 연구(Ordered Heap Tree 구축방식을 중심으로))

  • Im, Gang-Won;Yang, Seung-Muk;Shin, Seong-Il
    • Journal of Korean Society of Transportation
    • /
    • v.23 no.8 s.86
    • /
    • pp.113-128
    • /
    • 2005
  • We propose a modified version of 'a Lazy Version of Eppstein's k shortest paths Algorithm(LVEA)' which can find the k shortest paths in total time O(m+ n log n+ K log K) in the worst-case. The algorithm we propose, since the Link repeated paths are all eliminated when enumerating k shortest paths, is No link repeated paths algorithm that is suitable in a transportation network.

Test sequence generation using MUIO and shortest paths (MUIO와 shortest path를 이용한 개선된 시험순서생성)

  • 정윤희;홍범기
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.21 no.5
    • /
    • pp.1193-1199
    • /
    • 1996
  • This paper introduces an algorithm which uses MUIO and the shortest paths to minimize the length of test sequence. The length of test sequence is equal to the total number of the edges in a symmetric test graph $G^{*}$. Therefore, it is important to make a $G^{*}$ with the least number of the edges. This algorithm is based on the one proposed Shen[2]. It needs the complexity to make shortest paths but reduces the thest sequence by 1.0~9.8% over the Shen's algorithm. and this technique, directly, derives a symmetric test graph from an FMS.

  • PDF

Efficient Internet Traffic Engineering based on Shortest Path Routing (최단경로 라우팅을 이용한 효율적인 인터넷 트래픽 엔지니어링)

  • 이영석
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.2B
    • /
    • pp.183-191
    • /
    • 2004
  • Single shortest path routing is known to perform poorly for Internet traffic engineering (TE) where the typical optimization objective is to minimize the maximum link load. Splitting traffic uniformly over equal cost multiple shortest paths in OSPF and IS-IS does not always minimize the maximum link load when multiple paths are not carefully selected for the global traffic demand matrix. However, among all the equal cost multiple shortest paths in the network, a set of TE-aware shortest paths, which reduces the maximum link load significantly, can be found and used by IP routers without any change of existing routing protocols and serious configuration overhead. While calculating TE-aware shortest paths. the destination-based forwarding constraint at a node should be satisfied, because an IP router will forward a packet to the next-hop toward the destination by looking up the destination prefix. In this paper, we present a problem formulation of finding a set of TE-aware shortest paths in ILP, and propose a simple heuristic for the problem. From the simulation results, it is shown that TE-aware shortest path routing performs better than default shortest path routing and ECMP in terms of the maximum link load with the marginal configuration overhead of changing the next-hops.