• Title/Summary/Keyword: the rotating object

Search Result 127, Processing Time 0.032 seconds

Vision-based Motion Control for the Immersive Interaction with a Mobile Augmented Reality Object (모바일 증강현실 물체와 몰입형 상호작용을 위한 비전기반 동작제어)

  • Chun, Jun-Chul
    • Journal of Internet Computing and Services
    • /
    • v.12 no.3
    • /
    • pp.119-129
    • /
    • 2011
  • Vision-based Human computer interaction is an emerging field of science and industry to provide natural way to communicate with human and computer. Especially, recent increasing demands for mobile augmented reality require the development of efficient interactive technologies between the augmented virtual object and users. This paper presents a novel approach to construct marker-less mobile augmented reality object and control the object. Replacing a traditional market, the human hand interface is used for marker-less mobile augmented reality system. In order to implement the marker-less mobile augmented system in the limited resources of mobile device compared with the desktop environments, we proposed a method to extract an optimal hand region which plays a role of the marker and augment object in a realtime fashion by using the camera attached on mobile device. The optimal hand region detection can be composed of detecting hand region with YCbCr skin color model and extracting the optimal rectangle region with Rotating Calipers Algorithm. The extracted optimal rectangle region takes a role of traditional marker. The proposed method resolved the problem of missing the track of fingertips when the hand is rotated or occluded in the hand marker system. From the experiment, we can prove that the proposed framework can effectively construct and control the augmented virtual object in the mobile environments.

Precision Analysis of a Single Camera-based Depth Measurement System using the Reflected Images of a Rotating Mirror (회전 평면경의 반사 영상을 이용한 단일 카메라 시스템의 거리측정 정밀도 분석)

  • 나상익;손흥락;김형석
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2323-2326
    • /
    • 2003
  • Theoretical analysis of the depth measurement system with the use of a single camera and a rotating mirror has hem done. A camera in front of a rotating mirror acquires a sequence of reflected images, from which depth information is extracted. For an object pint at a longer distance, the corresponding pixel in the sequence of images moves at a higher speed. In this paper, the principle d the depth measurement-based on the relation of the pixel movement speed and the depth of objects have been investigated. Also, necessary mathematics to implement the technique is derived and presented. The factors affecting the measurement precision have been studied Analysis shows that the measurement m increases with the increase of depth. The rotational angle of the mirror between two image-takings also affects the measurement precision. Experimental results using the real camera-mirror setup are reported.

  • PDF

Computing Rotational Swept Volumes of Polyhedral Objects (다면체의 회전 스웹터 볼륨 계산 방법)

  • 백낙훈;신성용
    • Korean Journal of Computational Design and Engineering
    • /
    • v.4 no.2
    • /
    • pp.162-171
    • /
    • 1999
  • Plane sweep plays an important role in computational geometry. This paper shows that an extension of topological plane sweep to three-dimensional space can calculate the volume swept by rotating a solid polyhedral object about a fixed axis. Analyzing the characteristics of rotational swept volumes, we present an incremental algorithm based on the three-dimensional topological sweep technique. Our solution shows the time bound of O(n²·2?+T?), where n is the number of vertices in the original object and T? is time for handling face cycles. Here, α(n) is the inverse of Ackermann's function.

  • PDF

A Study on Defect Diagnosis of Rotating Machinery Using Neural Network (신경회로망을 이용한 회전기계의 고장진단에 관한 연구)

  • Choe, Won-Ho;Yang, Bo-Seok
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.28 no.2
    • /
    • pp.144-150
    • /
    • 1992
  • This paper describes an application of artificial neural network to diagnose the defects of rotating machiner. Induction motor was used to the object of defect diagnosis. For defect diagnosis, the frequency spectrum of vibration was utilized. Learning method of applied neural network was back propagation. Neural network has following advantage; Once it has been learned, inference time is very short and it can provide a reasonable conclusion regardless of insufficient input data. So, this defect diagnosis system can be used superiorly to rule based expert system as quality inspection of rotating machinery in the shop.

  • PDF

Disparity compensation for vergence control of active stereo camera (배경시차 보정을 이용한 스테레오 시각장치의 주시각제어)

  • 박순용;이용범;진성일
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.9
    • /
    • pp.67-76
    • /
    • 1997
  • This ppaer describes the development of the stereo camera system(KASS-1) and the control of the vergence of the stereo camera to fix a gaze on a moving object in real-time using a stereo disparity. The motion energy and the stereo disparity of a moving object from the stereo image are used to control the vergence of stereo camera to keep stereo disparity constant. The disparity from the rotating stereo camera is introduced not only from the moving object but also from the background. In this paper, the background disparity error due to the vergence control of the stereo camera is eliminated by compensation algoithm, and the vergence of steereo camera system can be controlled continuously using the disparity of a moving object only.

  • PDF

TangibleScreen : Enhancing Interactivity through Object-centric Projection (TangibleScreen 객체중심 프로젝션을 통한 상호작용성 향상)

  • Shin, Seon-Hyung;Kim, Joung-Hyun Gerard
    • Journal of the Korea Computer Graphics Society
    • /
    • v.9 no.1
    • /
    • pp.19-27
    • /
    • 2003
  • Most interaction schemes in virtual environment are indirect in one way or another. ln particular, without a haptic device (which introduces its own problems due to its cumbersomeness), users must rely on visual (or/and aural) feedback, and can not directly appreciate the 3Dness of the interaction object even with stereoscopy. This causes a drop in object presence because people are used to, for instance, observing objects in one's hand, rotating and manipulating them with physical contact. To alleviate this problem, this paper proposes a hand-held cubic screen, named TangibleScreen, on which the appearance of the target interaction object is projected. We choose the Relief Texture Mapping as the rendering method to correctly generate the viewer dependent textures to be projected on the non-planar surfaces of the TangibleScreen.

  • PDF

Localization of Rotating Sound Sources Using Beamforming Method (빔형성방법을 이용한 회전하는 음원의 위치 판별에 관한 연구)

  • Lee Jaehyung;Hong Suk-Ho;Choi Jong-Soo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.12
    • /
    • pp.1338-1346
    • /
    • 2004
  • The positions of rotating sound sources have been localized by experiments with the Doppler effects removed. In order to de-Dopplerize the sound signals emitted from moving sources, two kinds of signal reconstruction methods were applied. One is the forward propagation method and the other is the backward propagation method. Forward propagation method analyze the source emission time based on the instantaneous distance between sensors and the assumed source position, then the signals are reconstructed with respect to the emission time. On the other hand, the backward method uses time delay to do-Dopplerize the acquired data for the received time of reference. In both techniques. the reconstructed signal data were processed using beamforming algorithm to produce power distributions at the frequencies of interest. Experiments have been carried out for varying frequencies, rotating speeds and the object distances. It is shown that the forward propagation method gives better performance in locating source position than the backward propagation method.

Depth Measurement System Using Structured Light, Rotational Plane Mirror and Mono-Camera (선형 레이저와 회전 평면경 및 단일 카메라를 이용한 거리측정 시스템)

  • Yoon Chang-Bae;Kim Hyong-Suk;Lin Chun-Shin;Son Hong-Rak;Lee Hye-Jeong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.11 no.5
    • /
    • pp.406-410
    • /
    • 2005
  • A depth measurement system that consists of a single camera, a laser light source and a rotating mirror is investigated. The camera and the light source are fixed, facing the rotating mirror. The laser light is reflected by the mirror and projected to the scene objects whose locations are to be determined. The camera detects the laser light location on object surfaces through the same mirror. The scan over the area to be measured is done by mirror rotation. Advantages are 1) the image of the light stripe remains sharp while that of the background becomes blurred because of the mirror rotation and 2) the only rotating part of this system is the mirror but the mirror angle is not involved in depth computation. This minimizes the imprecision caused by a possible inaccurate angle measurement. The detail arrangement and experimental results are reported.

Oriented object detection in satellite images using convolutional neural network based on ResNeXt

  • Asep Haryono;Grafika Jati;Wisnu Jatmiko
    • ETRI Journal
    • /
    • v.46 no.2
    • /
    • pp.307-322
    • /
    • 2024
  • Most object detection methods use a horizontal bounding box that causes problems between adjacent objects with arbitrary directions, resulting in misaligned detection. Hence, the horizontal anchor should be replaced by a rotating anchor to determine oriented bounding boxes. A two-stage process of delineating a horizontal bounding box and then converting it into an oriented bounding box is inefficient. To improve detection, a box-boundary-aware vector can be estimated based on a convolutional neural network. Specifically, we propose a ResNeXt101 encoder to overcome the weaknesses of the conventional ResNet, which is less effective as the network depth and complexity increase. Owing to the cardinality of using a homogeneous design and multi-branch architecture with few hyperparameters, ResNeXt captures better information than ResNet. Experimental results demonstrate more accurate and faster oriented object detection of our proposal compared with a baseline, achieving a mean average precision of 89.41% and inference rate of 23.67 fps.

Distance Measurement Using a Single Camera with a Rotating Mirror

  • Kim Hyongsuk;Lin Chun-Shin;Song Jaehong;Chae Heesung
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.4
    • /
    • pp.542-551
    • /
    • 2005
  • A new distance measurement method with the use of a single camera and a rotating mirror is presented. A camera in front of a rotating mirror acquires a sequence of reflected images, from which distance information is extracted. The distance measurement is based on the idea that the corresponding pixel of an object point at a longer distance moves at a higher speed in a sequence of images in this type of system setting. Distance measurement based on such pixel movement is investigated. Like many other image-based techniques, this presented technique requires matching corresponding points in two images. To alleviate such difficulty, two kinds of techniques of image tracking through the sequence of images and the utilization of multiple sets of image frames are described. Precision improvement is possible and is one attractive merit. The presented approach with a rotating mirror is especially suitable for such multiple measurements. The imprecision caused by the physical limit could be improved through making several measurements and taking an average. In this paper, mathematics necessary for implementing the technique is derived and presented. Also, the error sensitivities of related parameters are analyzed. Experimental results using the real camera-mirror setup are reported.