Computing Rotational Swept Volumes of Polyhedral Objects

다면체의 회전 스웹터 볼륨 계산 방법

  • 백낙훈 (경북대학교 전자전기공학부) ;
  • 신성용 (한국과학기술원 전산학과)
  • Published : 1999.06.01

Abstract

Plane sweep plays an important role in computational geometry. This paper shows that an extension of topological plane sweep to three-dimensional space can calculate the volume swept by rotating a solid polyhedral object about a fixed axis. Analyzing the characteristics of rotational swept volumes, we present an incremental algorithm based on the three-dimensional topological sweep technique. Our solution shows the time bound of O(n²·2?+T?), where n is the number of vertices in the original object and T? is time for handling face cycles. Here, α(n) is the inverse of Ackermann's function.

Keywords

References

  1. Computational Geometry Shamos, M.I.
  2. Computational Geometry O'Rourke, J.
  3. Acta Informatica v.21 no.5 Space sweep solves intersection of convex polyhedra Hertel, S.;Mantyla, M.;Mehlhorn, K.;Nievergelt, J.
  4. J. Comput. Syst. Sci. v.38 Topologically sweeping an arrangement Edelsbrunner, H.;Guibas, L.J.
  5. IEEE Computer Graphics and Applications v.6 no.12 Geometric modeling for swept volume of mocing solids Wang, W.P.;Wang, K.K.
  6. Computer-Aided Design v.22 no.4 Sweeping of three-dimensional objects Martin, R.R.;Stephenson, P.C.
  7. ASME Journal of Mechanical Design v.113 Swept volume determination and interference detection for moving 3D solids Kieffer, J.;Litvin, F.L.
  8. The International Journal of Robotics Research v.9 no.5 Geometric representation of swept volumes with application to polyhedral objects Weld, J.D.;Leu, M.C.
  9. The International Journal of Robotics Research v.11 no.6 Analysis of swept volume via Lie groups and differential equations Blackmort, D.;Leu, M.C.
  10. Computer Aided Design v.26 no.4 Analysis and modeling of deformed swept volumes Blackmore, D.;Leu, M.C.;Shih, F.
  11. IEEE Trans. Visualizat. Comput. Graph. v.2 no.1 Function representation for sweeping by a moving solid Sourin, A.I.;Pasko, A.A.
  12. Computer Graphics (SIGGRAPH '86 Proceedings) v.20 Real-time shaded NC milling display Van Hook, T.
  13. Visual Computer v.10 no.6 Solid Sweeping in image space-application in NC simulation Hui, K.C.
  14. Numerical Comtrol Part Programming Childs, J. J.
  15. Computer-Aided Design v.26 no.11 Accessibility ifn 5-axis milling environment Elber, G.
  16. 한국CAD/CAM학회 논문집 v.2 no.1 평행 이동에 의한 스웹트 볼륨의 계산 방법 백낙훈;신성용
  17. International Journal of Computational Geometry & Applications(accepted) On computing translational swept volumes Baek, N.;Shin, S.Y.;Chwa, K.Y.
  18. An Introduction to Solid Modeling Mantyla, M.J.
  19. Computer Graphics, Principles and Practice(Second Edition) Foley, J.D.;van Dam, A.;Feiner, S.K.;Hughes, J.F.
  20. Information Processing Letters v.66 no.3 On circularly-hidden surface removal Baek, N.;Shin, S.Y.
  21. ACM Transactions on Graphics v.6 Worst-case optimal hidden-surface removal McKenna, M.
  22. Proc. Eurographics '81 Time and space bounds for hidden line and hidden surface algorithms Schmitt, A.
  23. Theoret. Comput. Sci. v.92 Arrangements of curves in the plane: Topology, combinatorics, and algorithms Edelsbrunner, H.;Guibas, L.;Pach, J.;Pollack, R.;Seidel, R.;Sharir, M.
  24. Discrete Comput. Geom. v.3 Planar realizations of nonlinear Davenport-Schinzel sequences by segments Wiernik, A.;Sharir, M.