최근 들어, 국내외에서는 투표용지 대신에 전자적 투표 장치를 이용하는 전자투표 시스템들을 개발하고 있으나 이러한 전자투표 시스템은 전자투표의 초기 단계로서 온라인 투표시스템은 아니다. 따라서 많은 암호학자들은 암호기술을 기반으로 하는 온라인 전자투표에 대한 연구를 하고 있다. 기존의 1-out-of-L 전자투표는 E1Gamal 암호 기법을 기반으로 하고 있다. 본 논문에서는 계산복잡도를 줄이기 위해, r차 잉여암호를 이용하고, E1Gamal 암호 기반의 1-out-of-L 전자투표의 계산복잡도와 제안한 1-out-of-L 전자투표의 계산복잡도를 비교 분석하였으며, 제안한 전자투표 방식이 보다 효율적임을 보여준다. 또한, 새로운 형태의1-out-of-L 전자투표의 투표-취소 기법을 제안한다. 기존의 전자투표 시스템들은 투표 후의 투표-취소 기법에 대해서 간과해 왔다. 본 논문에서는 제안한 투표-취소 기법을 위해, 기존의 r차 잉여암호의 준동형성을 확장한다. 확장된 준동형성은 프라이버시와 전체검증성을 유지하면서 투표를 취소할 수 있다.
Let X = {a} ${\cup}$ {$a_{i}$${$\mid$}$i $\in$ N} be a subspace of Euclidean space $E^2$ such that $lim_{{i}{\longrightarrow}{$\infty}}a_{i}$ = a and $a_{i}\;{\neq}\;a_{j}$ for $i{\neq}j$. Then it is well known that the space X has no expansive homeomorphisms with the shadowing property. In this paper we show that the set of all expansive homeomorphisms with the shadowing property on the space Y is dense in the space H(Y) of all homeomorphisms on Y, where Y = {a, b} ${\cup}$ {$a_{i}{$\mid$}i{\in}Z$} is a subspace of $E^2$ such that $lim_{i}$-$\infty$$a_{i}$ = b and $lim_{{i}{\longrightarrow}{$\infty}}a_{i}$ = a with the following properties; $a_{i}{\neq}a_{j}$ for $i{\neq}j$ and $a{\neq}b$.
본 논문은 원 그래프를 2-간선 연결 그래프로 단순화하고, 사이클 속성을 적용하여 최소신장트리를 빠르게 얻는 알고리즘을 제안하였다. Borůvka 알고리즘은 정점 (v) 당 최소 가중치 간선 (v) 을 1개씩 선택하는 1-간선 연결 그래프에 대해 사이클 속성을 적용하여 부분신장트리를 얻는다. 추가적으로 절단속성을 적용하여 부분신장트리를 연결하는 최소 가중치 간선을 선택한다. Kruskal 알고리즘은 그래프의 모든 간선을 대상으로 오름차순으로 절단 속성을 적용한다. 역-삭제 알고리즘은 내림차순으로 사이클 속성을 적용한다. Borůvka, Kruskal과 역-삭제 알고리즘은 모든 간선들을 대상으로 하기 때문에 항상 |e| 회 수행된다. 제안된 알고리즘은 첫 번째로, 정점 당 최소 가중치 간선을 2개씩 선택하는 2-간선 연결 그래프를 얻는다. 두 번째로, 2-간선 연결 그래프에 대해 사이클 속성을 적용하여 |e|=|v|-1 일 때 알고리즘을 종료시켰다. 제안된 방법들을 10개의 실제 그래프들에 적용한 결과 모두 최소신장트리를 얻는데 성공하였다. 또한, Borůvka, Kruskal과 역-삭제 알고리즘에 비해 수행 횟수를 60% 단축시켰다.
In this paper, we introduce a new property of a topological space which is weaker than sequential compactness and give some necessary and sufficient conditions for a $Fr{\acute{e}}chet$-Urysohn space with the property to be sequentially compact.
그동안 문화재교육은 국가의 요구와 개인의 필요로 인해 양적으로 많은 성장을 이루었다. 그러나 문화재교육의 질적 성장은 그에 뒤따르지 못했다. 문화재교육은 목표조차 제대로 설정되어 있지 못하였고, 그 결과 문화재교육은 그 정체성마저 흔들렸다. 지금의 문화재교육에서 가장 시급한 것은 먼저 문화재 교육의 목표를 설정하는 것이다. 본 연구는 현행 문화재교육의 목표를 분석하고, 문제점을 찾아낸 후 교육적으로 유의미하면서 국가의 요구와 개인의 필요를 충족시킬 수 있는 새로운 문화재교육 목표를 설정하고자 하였다. 현행 문화재교육 목표의 문제점은 문화재교육 관련자들이 교육목표의 개념을 정확하게 이해하지 못하고 있으며, 문화재교육 목표가 교육의 실제 내용을 제대로 담고 있지 못하다는 것이다. 또 문화재교육의 목표가 학습자의 다양한 역량과 흥미를 고려하고 있지 못하며, 시대 변화와도 맞지 않는다. 이런 문제점을 해결하기 위해서 'U.V.E.C. 문화재교육'이란 새로운 문화재교육을 제시하였다. U.V.E.C. 문화재교육은 문화재를 이해(Understand)하고, 문화재의 가치를 인식(Value)하고, 문화재를 향유(Enjoy)하고, 문화를 창조(Create)하는 교육이다. U.V.E.C. 문화재교육의 목표는 명확하고 실천적인 형식과 내용으로, 학습자 중심으로, 변용이 가능하도록 유연하게 설정하고자 하였다. 이런 방향을 바탕으로 총괄목표, 세부목표, 실천목표라는 단계별 목표를 설정하고 각 단계별 문화재교육 목표의 구체적 사례를 제시하였다. U.V.E.C. 문화재교육 목표는 교육으로서의 일반성과 문화재를 내용으로 하는 특수성을 고려하여 행동목표의 영역 다양성과 진술 명확성, 문제해결목표와 표현결과의 학습자 주도성과 개방성을 모두 포함하였다. U.V.E.C. 문화재교육 목표는 교수자에게는 명확하고 구체적인 목표를 제시해주어 교육의 효율성을 높이게 하고, 학습자에게는 흥미로우면서도 다양한 역량을 개발할 수 있게 할 것으로 생각된다. 아울러 U.V.E.C. 문화재교육 목표는 이제까지 제대로 연구된 적이 없는 문화재교육의 목표 설정에도 많은 영향을 줄 것으로 예상한다. 본 연구 이후에 U.V.E.C. 문화재교육의 내용과 방법에 대한 체계적이고 구체적인 연구가 지속적으로 이루어진다면 문화재교육 전반이 변화될 것이며 문화재교육은 새로운 학문의 한 영역으로 자리매김하게 될 것이다.
A bounded linear operator T on a complex Banach space X is said to have property (I) provided that T has Bishop's property (${\beta}$) and there exists an integer p > 0 such that for a closed subset F of ${\mathbb{C}}$${X_T}(F)={E_T}(F)=\bigcap_{{\lambda}{\in}{\mathbb{C}}{\backslash}F}(T-{\lambda})^PX$ for all closed sets $F{\subseteq}{\mathbb{C}}$, where $X_T$(F) denote the analytic spectral subspace and $E_T$(F) denote the algebraic spectral subspace of T. Easy examples are provided by normal operators and hyponormal operators in Hilbert spaces, and more generally, generalized scalar operators and subscalar operators in Banach spaces. In this paper, we prove that if T has property (I), then the quasi-nilpotent part $H_0$(T) of T is given by $$KerT^P=\{x{\in}X:r_T(x)=0\}={\bigcap_{{\lambda}{\neq}0}(T-{\lambda})^PX$$ for all sufficiently large integers p, where ${r_T(x)}=lim\;sup_{n{\rightarrow}{\infty}}{\parallel}T^nx{\parallel}^{\frac{1}{n}}$. We also prove that if T has property (I) and the spectrum ${\sigma}$(T) is finite, then T is algebraic. Finally, we prove that if $T{\in}L$(X) has property (I) and has decomposition property (${\delta}$) then T has a non-trivial invariant closed linear subspace.
In this paper, we aim to prove certain common fixed point theorems for a pair of weakly compatible mappings satisfying (CLRg) (or (E.A)) property in the bicomplex valued metric spaces. We also provide some examples which support the main results here.
We shall give a sufficient condition for Hartogs-Laurent domains over a base $\mathbb{C}$ to be taut, and study some properties for Hartogs-Laurent domains related to the $E_*$-extension property.
The aim of the present paper is three fold. Firstly, we obtain common fixed point theorems for a pair of selfmaps satisfying nonexpansive or Lipschitz type condition by using the notion of pointwise R-weak commutativity but without assuming the completeness of the space or continuity of the mappings involved (Theorem 1, Theorem 2 and Theorem 3). Secondly, we generalize the results obtained in first three theorems for four mappings by replacing the condition of noncompatibility of maps with the property (E.A) and using the R-weak commutativity of type $(A_g)$ (Theorem 4). Thirdly, in Theorem 5, we show that if the aspect of noncompatibility is taken in place of the property (E.A), the maps become discontinuous at their common fixed point. We, thus, provide one more answer to the problem posed by Rhoades [11] regarding the existence of contractive definition which is strong enough to generate fixed point but does not forces the maps to become continuous.
Let V be any valuation domain and let E be a subset of the quotient field K of V. We study the ring of integer-valued polynomials on E, that is, Int(E, V)={f$\in$K[X]|f(E)⊆V}. We show that, if E is precompact, then Int(E, V) has many properties similar to those of the classical ring Int(Z).In particular, Int(E, V) is dense in the ring of continuous functions C(E, V); each finitely generated ideal of Int(E, V) may be generated by two elements; and finally, Int(E, V) is a Prufer domain.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.