• Title/Summary/Keyword: the property (C)

Search Result 4,358, Processing Time 0.034 seconds

Property Analysis of Waterproofing and Corrosion-Resistant Performance in Concrete Water Supply Facilities (상수도시설 콘크리트 수조구조물에서의 염화이온 침투저항 특성분석)

  • Kwak, Kyu-Sung;Ma, Seung-Jae;Choi, Sung-Min;Oh, Sang-Keun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.3 no.2
    • /
    • pp.122-131
    • /
    • 2015
  • The purpose of this study is to understand the necessity for waterproofing and corrosion-resistant technique application on concrete water tank used in water supply. Relevant research materials and regulation were collected, reviewing for the case studies of sample structures aged over 20 years, and experimental studies on chloride conduction for the high performance concrete and penetration properties of water repellency of liquid type materials. The result is that the concrete water tank in the water supply is needed for waterproofing and corrosion-resistant material coating to maintain long term durability due to the constant environmentally induced degradation deterioration often caused by chloride attack.

Electrocaloric Effect in Heterolayered K(Ta,Nb)O3/Pb(Zr,Ti)O3 Thin Films Fabricated by Spin-Coating Method (스핀-코팅법으로 제작한 K(Ta,Nb)O3/Pb(Zr,Ti)O3 이종층 박막의 전기 열량 효과)

  • Yang, Young-Min;Yuk, Ji-Soo;Kim, Ji-Won;Yi, Sam-Haeng;Park, Joo-Seok;Kim, Young-Gon;Lee, Sung-Gap
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.33 no.6
    • /
    • pp.465-470
    • /
    • 2020
  • Heterolayered K(Ta,Nb)O3/Pb(Zr,Ti)O3 thin films on Pt/Ti/SiO2/Si substrates were prepared by a sol-gel process and spin-coating method. The structural and electrical properties were measured to investigate the possibility of application as an electrocaloric effect device. All specimens exhibited dense and uniform cross-sectional structures without pores, and the average thickness of the specimen coated six times was approximately 394 nm. Curie temperatures were observed at 5℃ or less in type-I and 10℃ in type-II specimens, respectively. Type-II specimens coated 6 times showed a relative dielectric constant of 758 and remanent polarization of 9.71 μC/㎠ at room temperature. The maximum electrocaloric effect occurred between 20 and 25℃, slightly higher than their Curie temperature, and the electrocaloric property (ΔT) of the type-II specimens coated 6 times was approximately 1.2℃ at room temperature.

Characterization for Ceramic-coated Magnets Using E-beam and Thermal Annealing Methods (마그넷 적용 세라믹 코팅 후막의 전자빔 조사 및 열 경화 방법에 따른 특성)

  • Kim, Hyug-Jong;Kim, Hee Gyu;Kang, In Gu;Kim, Min Wan;Yang, Ki Ho;Lee, Byung Cheol;Choi, Byung-Ho
    • Journal of Radiation Industry
    • /
    • v.3 no.1
    • /
    • pp.7-11
    • /
    • 2009
  • Hard magnet was usually used by coating $SiO_2$ ceramic thick films followed by the thermal annealing process. In this work, the alternative annealing process for NdFeB magnets using e-beam sources (1~2 MeV, 50~400 kGy) was investigated. NdFeB magnets was coated with ceramic thick films using the spray method. The optimal annealing parameter for e-beam source reveals to be 1 MeV and 300 kGy. The sample prepared at 1 MeV and 300 kGy was characterized by the analysis of the surface morphology, film hardness, adhesion and chemical stability. The mechanical property of thick film, especially film hardness, is better than that of thermal annealed samples at $180^{\circ}C$. As a result, e-beam annealing process will be one of candidate and attractive heat treatment process. In future, manufacturing process will be carried out in cooperation with the magnet company.

Effect of MgO-CaO-Al2O3-SiO2 Glass Additive Content on Properties of Aluminum Nitride Ceramics (MgO-CaO-Al2O3-SiO2 glass 첨가제 함량이 AlN의 물성에 미치는 영향)

  • Kim, Kyung Min;Baik, Su-Hyun;Ryu, Sung-Soo
    • Journal of Powder Materials
    • /
    • v.25 no.6
    • /
    • pp.494-500
    • /
    • 2018
  • In this study, the effect of the content of $MgO-CaO-Al_2O_3-SiO_2$ (MCAS) glass additives on the properties of AlN ceramics is investigated. Dilatometric analysis and isothermal sintering for AlN compacts with MCAS contents varying between 5 and 20 wt% are carried out at temperatures ranging up to $1600^{\circ}C$. The results showed that the shrinkage of the AlN specimens increases with increasing MCAS content, and that full densification can be obtained irrespective of the MCAS content. Moreover, properties of the AlN-MCAS specimens such as microhardness, thermal conductivity, dielectric constant, and dielectric loss are analyzed. Microhardness and thermal conductivity decrease with increasing MCAS content. An acceptable candidate for AlN application is obtained: an AlN-MCAS composite with a thermal conductivity over $70W/m{\cdot}K$ and a dielectric loss tangent (tan ${\delta}$) below $0.6{\times}10^{-3}$, with up to 10 wt% MCAS content.

Enzymatic Hydrolysis of Yellowfin Sole Skin Gelatin in a Continuous Hollow Fiber Membrane Reactor (연속식 중공사막 반응기를 이용한 각시가자미피 젤라틴의 가수분해)

  • KIM Se-Kwon;BYUN Hee-Guk;KANG Tae-Jung;SONG Dae-Jin
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.26 no.2
    • /
    • pp.120-132
    • /
    • 1993
  • A continuous hollow fiber membrane reactor(CHFMR) was developed and optimized for the production of yellowfin sole(Limanda aspera) skin gelatin hydrolysates using trypsin. The results were summerized as follows: The $K_m$ value of the CHFMR was 2.4 times higher than that of the batch reactor, indicating reduced enzyme affinity for the substrate. The $K_2$ value of the CHFMR was 8.5 times lower than that of the batch process, showing a significant reduction in trypsin activity in the CHFMR. The optimum operating conditions for the CHFMR process were $55^{\circ}C$, pH 9.0, flux 7.79 ml/min, residence time 77min, and trypsin to substrate ratio, 0.01(w/w) After operating for 60min under the above conditions, $79\%$ of the total amount of initial gelatin was hydrolysed. Enzyme leakage was observed through the 10,000 MWCO membrane after the 20min of reactor operation, while none occurred after 5hr. Total enzyme leakage was about $12.95\%$ at $55^{\circ}C$ for 5hrs. However, there was no apparent correlation between enzyme leakage and substrate hydrolysis. The membrane has a significant effect on trypsin activity loss for 60min of the CHFMR operation. The CHFMR operating with the membrane lost $34\%$ of the initial activity versus a $23\%$ loss of activity after 3hr in the continuous reactor lacking the hollow fiber membrane. The measurement of fouling property showed that relative flux reduction was $91\%$ and flux recover rate was $92\%$ at $10\%$ substrate solution. The productivity(378.85mg product/mg enzyme) of the CHFMR was more than 4 times higher than that of the batch reactor at $55^{\circ}C$.

  • PDF

Genetic Relationships of Panax Species by RAPD and ISSR Analyses

  • In, Dong-Su;Kim, Young-Chang;Bang, Kyong-Hwan;Chung, Jong-Wook;Kim, Ok-Tae;Hyun, Dong-Yoon;Cha, Seon-Woo;Kim, Tae-Soo;Seong, Nak-Sul
    • Korean Journal of Medicinal Crop Science
    • /
    • v.13 no.5
    • /
    • pp.249-253
    • /
    • 2005
  • This study was carried out to develop convenient and reproducible methods for identifying the genetic relationship among germplasms of Panax species based on molecular genetics. Using random amplified polymorphic DNA (RAPD) and inter simple sequence repeat (ISSR) analyses, genetic polymorphism of the Panax species was investigated with following cultivars and accessions, such as Chunpoong, Yunpoong, Kopoong, Sunpoong, and Kumpoong in domestic cultivars, Hwangsuk, Jakyung and Suckju in domestic accessions, and Panax quinquefolius L. and Panax japonicus C.A. Meyer in foreign introduced accessions, respectively. Specific DNA fragments ranging from 200 to 3,000 base pairs in size could be obtained with various ISSR and RAPD primers under the optimized PCR conditions. The dissimilarity coefficients among the genetic polymorphisms of ginseng cultivars and accessions were calculated from 0.26 to 0.90 in RAPD and from 0.12 to 0.89 in ISSR analysis, respectively. Eleven plant samples were grouped siblings together with cultivars and parents based on cluster analysis of genetic distance depending on genetic property such as origin of the species. In results, both RAPD and ISSR analyses were useful for identifying the genetic relationship among cultivars and accessions of Panax species at DNA level.

Densification of Mo Nanopowders by Ultra High Pressure Compaction (초고압 성형을 통한 Mo 나노 분말의 치밀화)

  • Ahn, Chi Hyeong;Choi, Won June;Park, Chun Woong;Lee, Seung Yeong;Kim, Young Do
    • Korean Journal of Materials Research
    • /
    • v.28 no.3
    • /
    • pp.166-173
    • /
    • 2018
  • Molybdenum (Mo) is one of the representative refractory metals for its high melting point, superior thermal conductivity, low density and low thermal expansion coefficient. However, due to its high melting point, it is necessary for Mo products to be fabricated at a high sintering temperature of over $1800-2000^{\circ}C$. Because this process is expensive and inefficient, studies to improve sintering property of Mo have been researched actively. In this study, we fabricated Mo nanopowders to lower the sintering temperature of Mo and tried to consolidate the Mo nanopowders through ultra high pressure compaction. We first fabricated Mo nanopowders by a mechano-chemical process to increase the specific surface area of the Mo powders. This process includes a high-energy ball milling step and a reduction step in a hydrogen atmosphere. We compacted the Mo nanopowders with ultra high pressure by magnetic pulsed compaction (MPC) before pressureless sintering. Through this process, we were able to improve the green density of the Mo compacts by more than 20 % and fabricate a high density Mo sintered body with more than a 95 % sintered density at relatively low temperature.

Recent Advances in Structural Studies of Antifreeze Proteins (구조 생물학을 이용한 Antifreeze protein의 최근 연구동향)

  • Lee, Jun-Hyuck;Lee, Sung-Gu;Kim, Hak-Jun
    • Ocean and Polar Research
    • /
    • v.33 no.2
    • /
    • pp.159-169
    • /
    • 2011
  • Antifreeze proteins (AFPs) have ice binding affinity, depress freezing temperature and inhibit ice recystallization which protect cellular membranes in polar organisms. Recent structural studies of antifreeze proteins have significantly expanded our understanding of the structure-function relationship and ice crystal growth inhibition. Although AFPs (Type I-IV AFP from fish, insect AFP and Plant AFP) have completely different fold and no sequence homology, they share a common feature of their surface area for ice binding property. The conserved ice-binding sites are relatively flat and hydrophobic. For example, Type I AFP has an amphipathic, single ${\alpha}$-helix and has regularly spaced Thr-Ala residues which make direct interaction with oxygen atoms of ice crystals. Unlike Type I AFP, Type II and III AFP are compact globular proteins that contain a flat ice-binding patch on the surface. Type II and Type III AFP show a remarkable structural similarity with the sugar binding lectin protein and C-terminal domain of sialic acid synthase, respectively. Type IV is assumed to form a four-helix bundle which has sequence similarity with apolipoprotein. The results of our modeling suggest an ice-binding induced structural change of Type IV AFP. Insect AFP has ${\beta}$-helical structure with a regular array of Thr-X-Thr motif. Threonine residues of each Thr-X-Thr motif fit well into the ice crystal lattice and provide a good surface-surface complementarity. This review focuses on the structural characteristics and details of the ice-binding mechanism of antifreeze proteins.

Seasonal Variations of Chemical Composition and Optical Properties of Aerosols at Seoul and Gosan (서울과 고산의 에어로졸 화학성분과 광학특성의 계절변화)

  • Lee, S.;Ghim, Y.S.;Kim, S.W.;Yoon, S.C.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.24 no.4
    • /
    • pp.470-482
    • /
    • 2008
  • Seasonal variations of chemical composition and optical properties of aerosols at Seoul and Gosan were investigated using the ground-based aerosol measurements and an optical model calculation. The mass fraction of elemental carbon was $8{\sim}17%$, but its contribution on light absorption was high up to $29{\sim}48%$ in Seoul. In Gosan, the contribution of water soluble aerosols on aerosol extinction was $83{\sim}94%$ due to the high mass fraction of these particles in the range of $56{\sim}88%$. Model calculation showed that the water holding capacity of aerosols was larger in Gosan than in Seoul because of higher relative humidity and temperature along with abundant water soluble aerosols. Difference between measured and calculated aerosol optical depths was the highest in summer. This was because aerosol optical depth calculated from ground-based measurements could not consider aerosol loadings at high altitude in spite of high column-integrated aerosol loadings observed by Sun photometer. Although hygroscopic growth was expected to be dominant in summer, the mass concentration of water soluble aerosols was too low to permit this growth.

Improvement of Comfortability and Ability on Nonwoven Fabric for Disposable Work Clothing Using Yellow Soil Printing (황토 날염을 이용한 일회용 작업복 소재의 쾌적성 및 기능성 향상에 관한 연구)

  • Jung, Myung-Hee;Park, Soon-Ja;Koshiba, Tomoko;Tamura, Teruko;Shin, Jung-Sook
    • The Research Journal of the Costume Culture
    • /
    • v.15 no.2 s.67
    • /
    • pp.276-283
    • /
    • 2007
  • The purpose of this study were to investigate characteristic changes on nonwoven fabric for disposable work clothes by the yellow soil printing. It separate grind yellow soil as two different size of particles $45\sim52{\mu}m$ and $53\sim65{\mu}m$ for hand screen printing on three kind of nonwoven fabrics. To examine the effect of yellow soil printing on nonwoven fabric were to observe, dyeability by using spectrophotometer, moisture regain by oven method, air permeability, anion property and antibacterial activity. The results were as follows: When yellow soil concentration increased from 5 to 10%, K/S value also increased from 1.05 to 1.88. When yellow soil concentration increased, moisture regain also increased. In same concentration, moisture regain occurred higher as particle of small size. Air permeability decreased when the charcoal printing concentration increased. Anion occurrence appeared $140\sim160ion/cc$ from three different kinds of nonwoven fabrics in 3% and 9% yellow soil concentration. Therefore, occurred anion ineffectively. In concentration of 3%, rate of deodorization measured as 89%, 83% and 87%, and 9% concentration caused 96%, 86% and 93% of high deodorization. Antibacterial activity examination in nonfinished nonwoven fabric resulted range of 60%, however, 3% and 9% concentration finished nonwoven fabric resulted 99.9% of excellent antibacterial activity Surface temperature increased $1.5\sim2^{\circ}C$ by yellow soil finishing.

  • PDF