• Title/Summary/Keyword: the peat soil

Search Result 194, Processing Time 0.031 seconds

Effects of Soil Covering Depth and Vegetation Base Materials on the Competition between Pinus densiflora Siebold & Zucc. and Lespedeza cyrtobotrya Miq. at Abandoned Coal Mine Land in Gangwon, Korea (강원도 석탄 폐광지 주변 폐석더미에서 복토와 식생기반재 처리가 소나무(Pinus densiflora Siebold & Zucc.)와 참싸리(Lespedeza cyrtobotrya Miq.)의 경쟁에 미치는 영향)

  • Yi, Koong;Lim, Joo-Hoon;Kim, Jeong-Hwan;Lee, Im-Kyun;Jeong, Yong-Ho
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.16 no.1
    • /
    • pp.99-107
    • /
    • 2013
  • This study was conducted to evaluate the effect of soil covering depth and vegetation base materials on the competition between Pinus densiflora Siebold & Zucc. and Lespedeza cyrtobotrya Miq., which were grown in an abandoned coal mine land for three years after seeding, by comparing their growth and stem density. The study site was consisted of sub-plots with four different soil covering depths (0cm, 10cm, 20cm, and 30cm) and four different compounds of vegetation base materials (peat moss (control), soil conditioner+peat moss (S+P), erosion control material+peat moss (E+P), and soil conditioner+erosion control material+peat moss (S+E+P)). Results of this study showed opposite pattern between P. densiflora and L. cyrtobotrya with different soil covering depth and compounds of vegetation base materials in general. P. densiflora showed the highest growth and stem density in plots with 10cm and 0cm depths of soil covering, respectively, while the lowest was shown in plots with 20cm depth of soil covering. In contrast, L. cyrtobotrya showed the highest growth and stem density in plots with 20cm depth of soil covering, while the lowest was shown in plots with 0cm depth of soil covering. In case of vegetation base materials, P. densiflora showed the highest growth and stem density in control plots and plots treated with S+P, respectively, while the lowest was shown in plots with S+E+P treatment. On the other hand, L. cyrtobotrya showed the highest growth and stem density in plots treated with S+E+P, while the lowest was shown in control plots. These results suggested the competition between two plants as a major cause of opposite patterns, which is induced by the suppressed growth and stem density of P. densiflora by fast growing L. cyrtobotrya. Despite the suppression of L. cyrtobotrya on P. densiflora, L. cyrtobotrya can play a positive role in improving soil quality, and thus it would be more desirable for restoring abandoned coal mine land to manage the growth of L. cyrtobotrya periodically, rather than eliminate them.

Effects of Source and Mixing Ratio of Green Topsoil on Growth-Quality of Creeping Bentgrass (토양개량제 혼합비율이 잔디의 생육및 품질에 미치는 영향)

  • 박찬무;황규석;이용범
    • Asian Journal of Turfgrass Science
    • /
    • v.6 no.1
    • /
    • pp.1-10
    • /
    • 1992
  • This experiment was carried out to investigate the effect of mixing ratio of soil amending materials such as peat. perlite, active carbon, and zeolite on the growth and quality of creeping bentgrass (Agrostis pa1ustris var. Penncross). The results of this experiment were surnrnarized as follows; 1.Nitrogen content of clippings was increased by the treatment of peat and active carbon. hut the other phosphorus, potassium, calcium and magnesium content were increased in addition of,5% to 10% of peat, and 2.5% to 5% of active carbon. 10% of perlite. and 4% of zeolite 2.Fast growth and good quality of bentgrass were showed at the addition of 10% peat. l0% perlite.2.5~% active carbon, and 4% zeolite But over treatment of peat and active carbon induced inhi-bition of root growth and occurrence of disease.

  • PDF

Effect of Four Soil Amendments on Turfgrass Establishment and Density in Creeping Bentgrass Grown in Sand-based Root Zone (4종류 토양개량재가 USGA 모래에 파종한 크리핑 벤트그래스의 유묘 활착률 및 밀도 변화에 미치는 영향)

  • Kim, Kyoung-Nam
    • Weed & Turfgrass Science
    • /
    • v.7 no.2
    • /
    • pp.148-157
    • /
    • 2018
  • Research was initiated to evaluate four domestic and overseas organic soil amendments (SAs) on turfgrass groundcover and density and to provide basic information on practical sports turf establishment. This study was conducted in Agrostis palustris Huds. (CB) grown in sand-based root zone. A total of 20 treatments of SA+sand were prepared by mixing 10 to 50% (v/v). These amendments were SABP (Berger Peat), SAEP (Eco-Peat), SAGS (G1-Soil), and SAPP (Premier Peat). Turfgrass groundcover and density significantly varied with SAs, its mixing rate to sand and week after seeding (WAS). Cumulative turfgrass density was variable, but a great change occurred between 2 and 4 WAS. Turfgrass density at 2 WAS ranged from 36.7 (SABP 30) to 89.7% (SAGS 20), being 53.0% in differences among treatments. However, CB reached to carrying capacity around 6 WAS. Thus, most treatments were similar to 90% or so in density. At the end of study, overall groundcover ranged between 60.7 (SAEP 10) and 96.7% (SAPP 50). Proper mixing rate was variable with SAs, being 10 and 20% for SABP and SAGS, respectively. But the optimum rate was 50% for both SAEP and SAPP.

Development of Degradation Agent for Oil Contaminated Soil using Modified Peat Moss and Organic Sludge (개량된 이탄과 유기성 슬러지를 이용한 유류오염토양 분해제 개발)

  • Kim, Soo-Hong;Lee, Chang-Han;Suh, Jung-Ho
    • KSBB Journal
    • /
    • v.25 no.1
    • /
    • pp.103-107
    • /
    • 2010
  • Oil degradation agent was developed with organic sludge and modified peat moss (MPM) to recover oil contaminated soil. Waste sludge discharged from wastewater treatment plant of chemical plant in Ulsan National Industrial Park was used as organic sludge, and MPM was purchased. Organic sludge was adequate to use as growth medium for microorganism, the surface of MPM had porous structure which could enhance the cultivation condition of oil degradation microorganisms. Water contents and TPH variation with time were observed to investigate the degradation capacity of developed degradation agent. Water contents were rapidly decreased with higher contents of MPM, however, in case of TPH, high MPM content decreased the degradation capacity. Therefore, it was recommended that the content of MPM was controlled to below 10% in degradation agent as mixing organic sludge with MPM.

Effect of Cornstarch-Based Absorbent Polymer on the Growth of Cool Season Turfgrasses in Sand-Based Mixture (옥수수 전분이 주성분인 토양보습제 첨가가 모래 배양토에서 한지형 잔디의 생육에 미치는 영향)

  • Choi, Joon-Soo;Yang, Geun-Mo;Ahn, Sang-Hyun;Cho, Yun-Sik
    • Asian Journal of Turfgrass Science
    • /
    • v.22 no.1
    • /
    • pp.75-84
    • /
    • 2008
  • This study was carried out to examine the effects of cornstarch-based absorbent polymer (CAP) on the growth of cool season turfgrasses in sand-based soil mixture. Kentucky bluegrass + perennial ryegrass mixtures seeded at May 18 in 2006 on sand-based soil mixture. Sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$, sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) mixtures were compared. Ground coverage of sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) treatments showed 50% at a month after seeding. But the coverage of sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$ resulted in 36.7%. Mixing of CAP with sand was considered to be efficient method for increasing ground coverage as much as peat. Dry weight of turfgrass tiller at sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v), and sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) were also significantly higher than sand + peat (5%, v/v), sand + CAP $20g{\cdot}m^{-2}$ mixtures at a month after seeding. Soil water retention at the sand + CAP $20g{\cdot}m^{-2}$, sand + CAP $40g{\cdot}m^{-2}$ + peat (5%, v/v) mixing were lower than sand + peat (5%, v/v) and sand + CAP $20g{\cdot}m^{-2}$ + peat (5%, v/v) during the dry periods. From the results, the mixing of CAP with sand is useful to increased ground coverage of kentucky bluegrass and perennial ryegrass.

The Influence on Compost effect of Livestock manure inoculated peat (니탄(peat)이 가축분의 퇴비효과에 미치는 영향)

  • Nam, Yi;Jung, Soo-Hee;Lee, Sung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 2002
  • Sawdust, peat, and sawdust+peat were used as bulking agent in the compost production process using three different origin of manure; cow, pig, and chicken. The organic content and individual N, P, K content of the final manure compost were higher when peat or peat+sawdust were used to control the moisture. The carbon to nitrogen ratio and moisture content were low when peat or peat+sawdust were employed. In the case of cow and pig manure compost produced with peat or peat+sawdust, beneficial microorganism content was also higher than that of the manure samples produced with sawdust only. These results indicate that peat can be a useful component in the production of high quality manure compost.

  • PDF

Cultivate Characterics of Chili Growth using Nutrient Solution in Articifial Soil (인공 토양에서의 양액을 이용한 고추의 재배 특성)

  • Yoon, Sang Jin;Sean, Keefe Dimas Harris;Kwon, Soon Hong;Chung, Sung Won;Kwon, Soon Goo;Park, Jong Min;Kim, Jong Soon;Choi, Won Sik
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.20 no.5
    • /
    • pp.351-357
    • /
    • 2017
  • Growing plant in potting media without soil is known as Soilless cultivation. This method is used mostly in greenhouse cultivation to increase horticultural commodities production. Peat moss is commonly utilized as potting media substrate because of its characteristic. However, peat moss price is high because of the quantity of peat moss in nature has been decreased. Recently, most of the research is conducted to find the alternative growing medium to cultivate horticulture plant in potting media. Perlite and rice husk ash were mentioned that had a potent as alternative growing media for seasonal plants to increase agriculture production due to the lack of production area. This study aimed to determine the effect of using different substrate and growth performance of chili. The method used was the soilless cultivation. The chili was planted in the pot with perlite media, rice husk ash media, and peat moss media. The chili was measured after 65 days after planting. The result showed that rice husk ash and perlite were more potentials in chili growth performance than peat moss. Rice husk ash had the significant result of plant height. While, Perlite effect on root length, plant weight, leaf length, and stem diameter. The best alternative for cultivation chili without substrate based on this research was perlite then rice husk ash and peat moss.

피트휴민(peat-Humin)을 이용한 연속흐름에서의 중금속 제거 연구

  • 이창훈;신현상;권순용;강기훈
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.122-125
    • /
    • 2004
  • 본 연구는 친환경적 유기흡착제로서 휴믹물질의 활용성을 평가하기 위한 기초 연구로서 Peat moss에서 추출된 불용성 휴믹성분인 피트휴민(p-Humin)을 충진한 컬럼을 이용하여 카드뮴과 구리이온에 대한 파과곡선을 얻었고, 각 금속이온에 대한 제거능을 비교해 보았다. 카드뮴의 경우, 파과시간은 7.5 hr, 77 BV로 나타났으며, 구리의 경우, 7.3 hr, 76 BV으로 나타났다. Thomas model로부터 구한 최대 흡착량은 구리가 44.66 mg/g로 카드뮴의 41.61 mg/g보다 높게 나타났다. 0.05 N HNO$_3$를 이용한 탈질실험 결과, 각 중금속에 대한 회수율은 95% 이상으로 높았다.

  • PDF

Comparison of the effect of peat moss and zeolite on ammonia volatilization as a source of fine particulate matter (PM 2.5) from upland soil

  • Park, Seong Min;Hong, Chang Oh
    • Korean Journal of Agricultural Science
    • /
    • v.46 no.4
    • /
    • pp.907-914
    • /
    • 2019
  • Ammonia (NH3) that reacts with nitric or sulfuric acid in the air is the major culprit contributing to the formation of fine particulate matter (PM2.5). NH3 volatilization mainly originates from nitrogen fertilizer and livestock manure applied to arable soil. Cation exchange capacity (CEC) of peat moss (PM) and zeolite (ZL) is high enough to adsorb ammonium (NH4+) in soil. Therefore, they might inhibit volatilization of NH3. The objective of this study was to compare the effect of PM and ZL on NH3 volatilization from upland soil. For this, a laboratory experiment was carried out, and NH3 volatilization from the soil was monitored for 12 days. PM and ZL were added at the rate of 0, 1, 2, and 4% (wt wt-1) with 354 N g m-2 of urea. Cumulative NH3-N volatilization decreased with increasing addition rate of both materials. Mean value of cumulative NH3-N volatilization across application rate with PM was lower than that with ZL. CEC increased with increasing addition rate of both materials. While the soil pH increased with ZL, it decreased with PM. Increase in CEC resulted in NH4+ adsorption on the negative charge of the external surface of both materials. In addition, decrease in soil pH hinders the conversion of NH4+ to NH3. Based on the above results, the addition of PM or ZL could be an optimum management to reduce NH3 volatilization from the soil. However, PM was more effective in decreasing NH3 volatilization than ZL due to the combined effect of CEC and pH.

Physicochemical Properties of Artificial Soil Formulated by Blending Calcined Clay and Coconut Peat and its Effect on Plant Growth (소성 점토다공체 및 코코넛 피트를 혼합한 인공토양의 물리화학적 특성과 식물생육에 미치는 영향)

  • 허근영;강호철;김인혜;심경구
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.30 no.5
    • /
    • pp.107-115
    • /
    • 2002
  • This study was carried out to compare artificial soil formulated by blending calcined clay and coconut peat with perlite, then to evaluate this soil as a perlite substitute for use as an artificial planting medium. To achieve this, a determination of the physico-chemical properties and it's effect on plant growth were conducted by comparing those with large perlite grains and small grains. The results are summarized as follows: 1) The bulk density was 0.41g/㎤. This density was lower than that of field soil, but higher than that of large perlite grain(0.23g/㎤) and small grain(0.25g/㎤). The porosity, field capacity, and saturated hydraulic conductivity were 71.3%, 49.2%, and 3.8$\times$10-2cm/s, respectively. The air-permeability, water holding capacity, and drainage were better than or equal to that both large and small perlite grain. 2) It was near-neutral in reaction(pH=6.6). It had a high organic carbon content(65.8g/kg) and a low available phosphoric acid content(84.7mg/kg). It was similar to crop soil in cation exchange capacity(11.4cmol/kg). It had a low exchangeable calcium content(0.71cmol/kg), a low exchangeable magnesium content(0.68cmol/kg), a high exchangeable potassium content(2.54cmol/kg), and a high exchangeable sodium content(1.12cmol/kg). Except for the exchangeable potassium and sodium content, the chemical properties were better than or equal to both large and small grain perlite. The excessive exchangeable potassium or sodium content will inhibit plant growth. 3) In Experiment 1, the plant growth tended to be higher compared to that of large and small perlite gains. But in Experiment 2, it tended to be lower. This might be linked to the excessive exchangeable potassium or sodium content. 4) It could be considered as a renewable perlite substitute for greening of artificial soil. But, it would be necessary to leach the excessive exchangeable potassium or sodium to avoid the risk of inhibiting plant growth.