• Title/Summary/Keyword: the patterns of land use change

Search Result 87, Processing Time 0.027 seconds

LANDCOVER CHANGE DETECTION USING MODIS TEMPORAL PROFILE DATA SUPPORED BY ASTER NDVI

  • Yoon, Jong-Suk;Kang, Sung-Jin;Lee, Kyu-Sung
    • Proceedings of the KSRS Conference
    • /
    • 2008.10a
    • /
    • pp.382-385
    • /
    • 2008
  • MODIS images have a great advantage of high temporal resolution to monitor land cover changes in a large area. The moderate and low spatial resolution satellite images are incomparably economic than high resolution satellite images. As diverse satellite images are provided recently, strategies using satellite images are necessary for continuous, effective and long-term land monitoring. This research purposed to use MODIS images to monitor land cover in Korean peninsula for long-term and continuous change detection. To maximize the advantages of high temporal resolution, the change detection was based on the MODIS temporal profiles of the surface reflectance for one year. In this study as the reflectance patterns of year 2005 were compared with the reflectance patterns of year 2007, the changed pixels could be detected during two years. To set up the threshold value for the decision of change, ASTER images with the higher spatial resolution, 15m, were used for this study. The test area covered the suburban area of metropolitan city, Seoul, where the landcover changes have been frequently happened.

  • PDF

Forecast of Land use Change for Efficient Development of Urban-Agricultural city (도농도시의 효율적 개발을 위한 토지이용변화예측)

  • Kim, Se-Kun;Han, Seung-Hee
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.20 no.2
    • /
    • pp.73-79
    • /
    • 2012
  • This study attempts to analyze changes in land use patterns in a compound urban and agricultural city Kimje-si, using LANDSAT TM imagery and to forecast future changes accordingly. As a new approach to supervised classification, HSB(Hue, Saturation, Brightness)-transformed images were used to select training zones, and in doing so classification accuracy increased by more than 5 percent. Land use changes were forecasted by using a cellular automaton algorithm developed by applying Markov Chain techniques, and by taking into account classification results and GIS data, such as population of the pertinent region by area, DEMs, road networks, water systems. Upon comparing the results of the forecast of the land use changes, it appears that geographical features had the greatest influence on the changes. Moreover, a forecast of post-2030 land use change patterns demonstrates that 21.67 percent of mountain lands in Kimje-si is likely to be farmland, and 13.11 percent is likely to become city areas. The major changes are likely to occur in small mountain lands located in the heart of the city. Based on the study result, it seems certain that forecasting future land use changes can help plan land use in a compound urban and agricultural city to procure food resources.

Using Tower Flux Data to Assess the Impact of Land Use and Land Cover Change on Carbon Exchange in Heterogeneous Haenam Cropland (비균질한 해남 농경지의 탄소교환에 미치는 토지사용 및 피복변화의 영향에 대한 미기상학 자료의 활용에 관하여)

  • Indrawati, Yohana Maria;Kang, Minseok;Kim, Joon
    • Proceedings of The Korean Society of Agricultural and Forest Meteorology Conference
    • /
    • 2013.11a
    • /
    • pp.30-31
    • /
    • 2013
  • Land use and land cover change (LULCC) due to human activities directly affects natural systems and contributes to changes in carbon exchange and climate through a range of feedbacks. How land use and land cover changes affect carbon exchanges can be assessed using multiyear measurement data from micrometeorological flux towers. The objective of the research is to assess the impact of land use and land cover change on carbon exchange in a heterogeneous cropland area. The heterogeneous cropland area in Haenam, South Korea is also subjected to a land conversion due to rural development. Therefore, the impact of the change in land utilization in this area on carbon exchange should be assessed to monitor the cycle of energy, water, and carbon dioxide between this key agricultural ecosystem and the atmosphere. We are currently conducting the research based on 10 years flux measurement data from Haenam Koflux site and examining the LULCC patterns in the same temporal scale to evaluate whether the LULCC in the surrounding site and the resulting heterogeneity (or diversity) have a significant impact on carbon exchange. Haenam cropland is located near the southwestern coast of the Korean Peninsula with land cover types consisting of scattered rice paddies and various croplands (seasonally cultivated crops). The LULCC will be identified and quantified using remote sensing satellite data and then analyzing the relationships between LULCC and flux footprint of $CO_2$ from tower flux measurement. We plan to calculate annual flux footprint climatology map from 2003 to 2012 from the 10 years flux observation database. Eventually, these results will be used to quantify how the system's effective performance and reserve capacity contribute to moving the system towards more sustainable configuration. Broader significance of this research is to understand the co-evolution of the Haenam agricultural ecosystem and its societal counterpart which are assumed to be self-organizing hierarchical open systems.

  • PDF

Urban Growth Monitoring using Multi-temporal Satellite Images and Geographic Information

  • Lee, Kwang-Jae;Kim, Youn-Soo;Kim, Byung-Kyo
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.470-472
    • /
    • 2003
  • The primary goal in this paper is to analyze urban growth patterns using multi-temporal remote sensing images and geographic information data. In order to accomplish this purpose, firstly data pre-processing is carried out, and then land-use maps are generated with ancillary data source by heads-up on-screen digitizing. Lastly, using the results of the previous stages, the patterns of land-use and urban changes are monitored by the proposed scheme. In this research, using the multi-temporal images and geographic information data, monitoring of urban growth was carried out with the application of urban land-use changes.

  • PDF

Simulation of land use changes in Hanam city using an object-based cellular automata model (객체기반 셀룰러오토마타 모형을 이용한 하남시 토지이용변화 모의)

  • KIM, Il-Kwon;KWON, Hyuk-Soo
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.21 no.4
    • /
    • pp.202-217
    • /
    • 2018
  • Urban land use changes by human activities affect spatial configuration of urban areas and their surrounding ecosystems. Although it is necessary to identify patterns of urban land use changes and to simulate future changes for sustainable urban management, simulation of land use changes is still challenging due to their uncertainty and complexity. Cellular automata model is widely used to simulate urban land use changes based on cell-based approaches. However, cell-based models can not reflect features of actual land use changes and tend to simulate fragmented patterns. To solve these problems, object-based cellular automata models are developed, which simulate land use changes by land patches. This study simulate future land use changes in Hanam city using an object-based cellular automata model. Figure of merit of the model is 24.1%, which assess accuracy of the simulation results. When a baseline scenario was applied, urban decreased by 16.4% while agriculture land increased by 9.0% and grass increased by 19.3% in a simulation result of 2038 years. In an urban development scenario, urban increased by 22.4% and agriculture land decreased by 26.1% while forest and grass did not have significant changes. In a natural conservation scenario, urban decreased by 29.5% and agriculture land decreased by 8.8% while each forest and grass increased by 6% and 42.8%. The model can be useful to simulate realistic urban land use change effectively, and then, applied as a decision support tool for spatial planning.

Prediction of Land Use/Land Cover Change in Forest Area Using a Probability Density Function

  • Park, Jinwoo;Park, Jeongmook;Lee, Jungsoo
    • Journal of Forest and Environmental Science
    • /
    • v.33 no.4
    • /
    • pp.305-314
    • /
    • 2017
  • This study aimed to predict changes in forest area using a probability density function, in order to promote effective forest management in the area north of the civilian control line (known as the Minbuk area) in Korea. Time series analysis (2010 and 2016) of forest area using land cover maps and accessibility expressed by distance covariates (distance from buildings, roads, and civilian control line) was applied to a probability density function. In order to estimate the probability density function, mean and variance were calculated using three methods: area weight (AW), area rate weight (ARW), and sample area change rate weight (SRW). Forest area increases in regions with lower accessibility (i.e., greater distance) from buildings and roads, but no relationship with accessibility from the civilian control line was found. Estimation of forest area change using different distance covariates shows that SRW using distance from buildings provides the most accurate estimation, with around 0.98-fold difference from actual forest area change, and performs well in a Chi-Square test. Furthermore, estimation of forest area until 2028 using SRW and distance from buildings most closely replicates patterns of actual forest area changes, suggesting that estimation of future change could be possible using this method. The method allows investigation of the current status of land cover in the Minbuk area, as well as predictions of future changes in forest area that could be utilized in forest management planning and policymaking in the northern area.

A Spatio-temporal Change Analysis of Rural Landscape Patterns using Landscape Ecology Indices : Focused on a Part of Gyeonggi-do (경관생태지수를 활용한 농촌경관의 시계열적 변화 분석 - 경기도 일부 시.군을 대상으로 -)

  • Oh, Yun-Gyeong;Choi, Jin-Yong;Bae, Seung-Jong;Jang, Min-Won
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.49 no.6
    • /
    • pp.65-76
    • /
    • 2007
  • Studies in landscape ecology have emphasized on the relationship between landscape patterns and shapes. A variety of landscape metrics has been developed so far to quantify landscape structures. Therefore, their developments and widespread applications become possible with the advent of spatial information systems including geographic information systems(GIS) and remote sensing. This study is to grasp the change of land use and landscape ecology indices, and to analyze the change of landscape structure in a part of Gyeonggi-do during 15 years from 1985 to 2000. Green-area distribution maps and agricultural-area distribution maps for the analysis were reconstructed from land cover maps constructed by WAMIS(Water Management Information System). And then, 4 landscape ecology indices(TA, LPI, SHAPE_AM, CAI_MN) for the green-area and 5 landscape ecology indices(TA, PD, LPI, LSI, CAI_MN) for the agricultural-area were selected by using pearson correlation analysis. According to the spatio-temporal change analysis using landscape ecology indices, the green-area fragmentation of Yongin was the most severe of the study area and the agricultural-area fragmentation of Gwangju and Namyangju was more severe than any other regions.

The Analysis of Potential Reduction of CO2 Emission In Soil and Vegetation due to Land use Change (토지이용변화에 따른 식생 및 토양의 이산화탄소 저감잠재량 분석)

  • Lee, Dong-Kun;Park, Chan
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.12 no.2
    • /
    • pp.95-105
    • /
    • 2009
  • Land Use Changes (LUCs) have effects on greenhouse gas emissions and carbon stocks in soil and vegetation. Therefore, predictions for LUC are very important for achieving quantitative targets of $CO_2$ reduction rates. Some research exists on carbon fluxes and carbon cycles to estimate carbon stocks in terrestrial ecosystems in Korea. However, these researches have limitations in terms of helping us understand future potential reductions of $CO_2$ that reflect the influence of LUC. The aim of this study is to analyze the reduction levels of $CO_2$ emissions while considering LUC scenarios that effect carbon fluxes for LCS basic study in the year 2030. In this study, a common approach to model the effects of LUC on carbon stocks is the use of CA-Markov technical process with LUC patterns in the past. Potential reduction of $CO_2$ is calculated by change of land use that contains different soil organic carbon, each land use type, and biomass in vegetation. An IPCC analytical method of natural carbon sink and coefficient results from previous study in Korea is used as a calculation method for potential reduction of $CO_2$. As a result, 12,419 KtC will be reduced annually, which is 8.3% percent of 2005 $CO_2$ emissions in Korea. This will result in 3,226 hundred million won of economic efficiency. In conclusion, conservation of natural carbon sinks is necessary even if the amount of potential reduction change is little.

Analysis of Land Use Pattern Change of Sub-Watershed -Focused on Moyar, India- (유역하류지역의 토지이용변화 분석 -인도 Moyar유역을 중심으로-)

  • Malini, Ponnusamy;Yeu, Yeon
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.18 no.2
    • /
    • pp.87-92
    • /
    • 2010
  • Large pressure on the growing population has increased rapid change in the LULC (land use/land cover) patterns in the watershed area. Spatial distribution of LULC information and its changes are desirable for any effective planning, managing and monitoring activities. The aim of the study is to produce the 1,50,000 scaled LULC change map for the sub-watershed, Western Moyar, India using the multi-temporal satellite image dataset of IRS LISS III images for the year 1989, 1999, and 2002. About 9 classes are extracted using onscreen visual interpretation techniques for all the three years. The change detection analysis was performed using matrix method for period I (1989-1999) and period II (1999-2002). The study reveals that the changes noticed in period II (1999-2002) is comparatively more than period I (1989-1999), which is dynamic information to protect the sub-watershed area from the deterioration and paves the way to for the sustainable development.

Potential Effects of Land-Use Change on the Local climete (토지이용 변화가 국지기후에 미치는 영향)

  • 이현영
    • Korean Journal of Remote Sensing
    • /
    • v.11 no.3
    • /
    • pp.83-100
    • /
    • 1995
  • The land-use has changed rapidly during the last two decades in accordance with urbanization in the Seoul Metropolitan Region. As a result of these changes, the local climate has undergone changes as well. This study intends to define the land-use changes, and then to show how they have brought in significant changes in the local climates. Land-use changes in the study area so repidly that up-to date maps and documents are not available at present. Therefore, Landsat data for land-use classification and NOAA AVHRR thermal data for the temperature fields were analyzed. Additionary, to visualize the effect of the land-use on the local climate, computer-enhanced brightness temperatures, Green Belt and city boundaries were overlaid on land-use patterns obtained from satellite images using GIS techniques. The results of analysis demonstrate that Green Space in the Seoul Metropolitan Region decreased from 94% to 62% while urban land-use increased ten times, from 4% to 39% for the period of 1972-1992. The resulting disappearance of biomass caused by land-use changes may have implications for the local-and micro-climate. The results show that the local climate of the study area became drier and warmer. This study also suggests a need for further studies of man's effects on local climate to minimize adverse influences and hazardous pollution and efficacious ways for urban planning.