Browse > Article
http://dx.doi.org/10.11108/kagis.2018.21.4.202

Simulation of land use changes in Hanam city using an object-based cellular automata model  

KIM, Il-Kwon (Bureau of Ecological Research, National Institute of Ecology)
KWON, Hyuk-Soo (Bureau of Ecological Research, National Institute of Ecology)
Publication Information
Journal of the Korean Association of Geographic Information Studies / v.21, no.4, 2018 , pp. 202-217 More about this Journal
Abstract
Urban land use changes by human activities affect spatial configuration of urban areas and their surrounding ecosystems. Although it is necessary to identify patterns of urban land use changes and to simulate future changes for sustainable urban management, simulation of land use changes is still challenging due to their uncertainty and complexity. Cellular automata model is widely used to simulate urban land use changes based on cell-based approaches. However, cell-based models can not reflect features of actual land use changes and tend to simulate fragmented patterns. To solve these problems, object-based cellular automata models are developed, which simulate land use changes by land patches. This study simulate future land use changes in Hanam city using an object-based cellular automata model. Figure of merit of the model is 24.1%, which assess accuracy of the simulation results. When a baseline scenario was applied, urban decreased by 16.4% while agriculture land increased by 9.0% and grass increased by 19.3% in a simulation result of 2038 years. In an urban development scenario, urban increased by 22.4% and agriculture land decreased by 26.1% while forest and grass did not have significant changes. In a natural conservation scenario, urban decreased by 29.5% and agriculture land decreased by 8.8% while each forest and grass increased by 6% and 42.8%. The model can be useful to simulate realistic urban land use change effectively, and then, applied as a decision support tool for spatial planning.
Keywords
Urbanization; Land use change; Object-based model; Cellular automata; Scenarios;
Citations & Related Records
Times Cited By KSCI : 2  (Citation Analysis)
연도 인용수 순위
1 Liu, X., X. Li, S. Wu and T. Liu. 2008. Simulating complex urban development using kernel-based non-linear cellular automata. Ecological Modeling 211(1): 169-181.   DOI
2 Li, X., P. Gong, L. Yu and T. Hu. 2017. A segment derived patch-based logistic cellular automata for urban growth modeling with heuristic rules. Computers, Environment and Urban Systems 65:140-149.   DOI
3 Lu, Y., M. Cao and L. Zhang. 2015. A Vector-based cellular automata model for simulating urban land use change. Chinese Geographical Science 25(1):74-84.   DOI
4 Meentemeyer, R.K., W. Tang, M.A. Dorning, J.B. Vogler, N. Cunniffe and A. Schoemaker. 2013. FUTURES: Multilevel simulations of emerging urban-rural landscape structure using a stochastic patch-growing algorithm. Annals of th Association of American Geographers 103(4):785-807.   DOI
5 Moghadam S.A., M. Karimi and K. Habibi. 2018. Simulating urban growth in a megalopolitan area using a patch-based cellular automata. Transactions in GIS 22(1):249-268.   DOI
6 Park, I.H. and S.R. Ha. 2013. Land use change prediction of Cheongju using SLEUTH model. Journal of Environmental Impact Assessment 22(1):109-116.   DOI
7 Polemans, L. and A. Van Rompaey. 2010. Complexity and performance of urban expansion models. Computers, Environment and Urban Systems 34(1):17-27.   DOI
8 Pontius, R.G., W. Boersma, J.C. Castella, K. Clarke, T. Nijs, C. Dietzel, Z. Duan, E. Fotsing, N. Goldstein, K. Kok, E. Koomen, C.D. Lippitt, W. McConnell, A. Mohd Sood, B. Pijanowski, S. Pithadis, S. Sweeney, T.N. Trung, A.T. Veldkamp and P.H. Verburg. 2008. Comparing the input, output and validation maps for several models of land change. The Annals of Regional Science 42:11-37.   DOI
9 Sante, I., A.M. Garcia, D. Miranda and R. Crecente. 2010. Cellular automata models for the simulation of real-world urban processes: a review and analysis. Landscape and Urban Planning 96(2):108-122.   DOI
10 Stevens, D., S. Dragicevic and K. Rothley. 2007. iCity: A GIS-CA modelling tool for urban planning and decision making. Environmental Modelling and Software 22(6):761-773.   DOI
11 Torrens, P.M. and I. Benenson. 2005. Geographic automata systems. International Journal of Geographical Information Science 19(4):385-412.   DOI
12 van Vliet, J., A.K. Bregt, D.G. Brown, H. van Delden, S. Heckbert and P.H. Verburg. 2016. A review of current calibration and validation practices in land-use change modelling. Environmental Modeling and Software 82:174-182.   DOI
13 Verburg, P.H., W. Soepboer, A. Veldkamp, R. Limpiada, V. Espaldon and S.S. Mastura. 2002. Modeling the spatial dynamic of regional land use: the CLUE -S model. Environmental Management 30(3):391-405.   DOI
14 Verburg, P.H., J.R.R. van Eck, T.C.M. de Nijs, H. Visser and K. de Jong. 2004. A method to analyze neighborhood characteristics of land use patterns. Computers, Environment and Urban Systems 28(6):667-690.   DOI
15 Verburg, P.H., A. Veldkamp and M.D.A. Rounsevell. 2006. Scenario-based studies of future land use in Europe. Agriculture, Ecosystems and Environment 114:1-6.   DOI
16 Wang, F. and D.J. Marceau. 2013. A patch-based cellular automaton for simulating land-use changes at fine spatial resolution. Transactions in GIS 17(6): 828-846.   DOI
17 White, R. and G. Engelen. 1993. Cellular automata and fractal urban form: A cellular modeling approach to the evolution of urban land-use patterns. Environment and Planning A 25:1175-1199.   DOI
18 Yao, Y., X. Liu, X. Li, P. Liu, Y. Hong, Y. Zhang and K. Mai. 2017. Simulating urban land-use changes at a large scale by integrating dynamic land parcel subdivision and vector-based cellular automata. International Journal of Geographical Information Science 31(12): 2452-2479.   DOI
19 Wilensky, U. 1999. NetLogo. http://ccl.northwestern.edu/netlogo/. Center for connected learning and computer-based modelling, Northwestern University, Evanston, Illinois.
20 Wu, F. 2002. Calibration of stochastic cellular automata: The application to rural-urban land conversions. International Journal of Geographical Information Science 16(8):795-818.   DOI
21 Cho, D. 2008. Cellular automata based urban landuse change modeling considering development density. Journal of the Korean Geographical Society 43(1):117-133.
22 Alcamo, J., K. Kok, G. Busch and J. Priess. 2008. Searching for the future of land scenarios from the local to global scale. In: Alcamo, J.(Ed.), Environmental futures: The practice of environmental scenario analysis. Elsevier, Amsterdam, The Netherlands.
23 Antrop, M. 2004. Landscape changes and the urbanization process in Europe. Landscape and Urban Planning 67: 9-26.   DOI
24 Byun, G.I., C.S. Lee and C.H. Kim. 2013. A study of the change of land price according to the adjustment of development restriction area-focused on Hanam in Korea. Journal of Korea Planning Association 48(7):181-199.
25 Chen, G., G.J. Hay, L.M. Carvalho and M.A. Wulder. 2012. Object-based change detection. International Journal of Remote Sensing 33:4434-4457.   DOI
26 Chen, Y., X. Li, X. Liu and B. Ai. 2014. Modeling urban land-use dynamics in a fast developing city using the modified logistic automaton with a patch-based simulation strategy. International Journal of Geographical Information Science 28(2):234-255.   DOI
27 Choi, D.S. and C.H. Yim. 2004. Densityincorporated cellular automata modelling: simulation of the urban growth for Seoul metropolitan area. Journal of Korea Planning Association 39(5):7-24.
28 Feng, Y., Y. Liu, X. Tong, M. Liu and S. Deng. 2011. Modeling dynamic urban growth using cellular automata and particle swarm optimization rules. Landscape and Urban Planning 102:188-196.   DOI
29 Han, J., Y. Hayashi, X. Cao and H. Imura. 2009. Application of an integrated system dynamics and cellular automata model for urban growth assessment: A case study of Shanhai, China. Landscape and Urban Planning 91:133-141.   DOI
30 Kim, I., S. Arnhold, S. Ahn, Q.B. Le, S.J. Kim, S.J. Park and T. Koellner. 2017. Land use change and ecosystem services in mountainous watersheds: Predicting the consequences of environmental policies with cellular automata and hydrological modeling. Environmental Modelling and Software(in press).
31 Lawler, J.J., D.J. Lewis, E. Nelson, A.J. Plantinga, S. Polasky, J.C. Withey, D.P. Helmers, S. Martinuzzi, D. Pennington and V.C. Radeloff. 2014. Projected land -use change impacts on ecosystem services in the United States. Proceedings of the National Academy of Science 201405557.
32 Kim, J., J. Park, I. Song, J. Song, S.M. Jun and M.S. Kang. 2015. Analysis of land use change using RCP-based Dyna- CLUE model in the Hwangguji River Watershed. Journal of Korean Society of Rural Planning 21(2):33-49.   DOI
33 Kim, O. 2015. Limitation of applying landchange models for REDD reference level setting. Journal of the Korean Geographical Society 50(3):277-287.
34 Landis, J. 1994. The California urban future model: a new generation of metropolitan simulation models. Environment and Planning B 21:399-420.   DOI
35 Lee, Y.G., Y.H. Cho and S.J. Kim. 2016. Prediction of land-use change based on urban growth scenario in South Korea using CLUE-s model. Journal of the Korean Association of Geographic Information Studies 19(3):75-88.   DOI
36 Lee, S.H., J.M. Yun, K.C. Seo, K.W. Nam and S.C. Park. 2004. A study on the urban growth model of Gimhae city using celluar automata. Journal of the Korean Association of Geographic Information Studies 7(3):118-125.
37 Liao, J., L. Tang, G. Shao, X. Su, D. Chen and T. Xu. 2016. Incorporation of extended neighborhood mechanisms and its impact on urban land-use cellular automata simulations. Environmental Modelling and Software 75:163-175.   DOI