• Title/Summary/Keyword: the orbit of moon

Search Result 204, Processing Time 0.024 seconds

On-Orbit AOCS Sensor Calibration of Spacecraft (인공위성의 궤도상에서 자세제어계 센서 보정)

  • Yong, Gi-Ryeok;Lee, Seon-Ho;O, Si-Hwan;Bang, Hyo-Chung;Lee, Seung-U
    • Aerospace Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.90-101
    • /
    • 2006
  • In this paper, the calibration parameters of the gyros and star hackers are estimated by using an on-orbit AOCS sensor calibration algorithm. The calibration algorithm was implemented by Kalman filter. In order to estimate gyro calibration parameters, the calibration algorithm requires calibration maneuver and it was analyzed whether the star trackers are protected by Sun, Moon and Earth or not. Also the star tracker calibration algorithm used the camera image information. This kinds of camera image information simulated ground control point and orbit information. The estimated accuracy of star tracker calibration parameters depends on camera image information.

  • PDF

Sensitivity of M/M/c Retrial Queue with Respect to Retrial Times : Experimental Investigation (M/M/c 재시도대기체계에서 재시도시간의 민감성에 대한 실험적 고찰)

  • Shin, Yang-Woo;Moon, Dug-Hee
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.37 no.2
    • /
    • pp.83-88
    • /
    • 2011
  • The effects of the moments of the retrial time to the system performance measures such as blocking probability, mean and standard deviation of the number of customers in service facility and orbit are numerically investigated. The results reveal some performance measures related with the number of customers in orbit can be severely affected by the fourth or higher moments of retrial time.

Space Charge Analysis in Polymer Irradiated by Quasi-Monoenergetic Electron Beam (전자빔 조사에 의한 폴리머 내의 공간 전하 분석)

  • Choi, Yong-Sung;Kim, Hyung-Gon;Moon, Jong-Dae;Lee, Kyung-Sup
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04c
    • /
    • pp.62-66
    • /
    • 2008
  • Spacecrafts such as most of commercial satellites that are operating in the geostationary orbit can be subjected to intense irradiation by charged particles. The surface made of dielectric materials can therefore become probable sites for damaging electrostatic discharges. Thanks to a specially equipped chamber, the spatial environment can be reproduced experimentally in the laboratory. In this paper, the behavior of high energy electrons injected in polymers such as PolyMethylMetaAcrylate (PMMA) and Kapton is studied. Results obtained by surface potential technique, pulse-electro acoustic device and a cell based on the split Faraday cup system are analyzed and discussed.

  • PDF

Ocean tide-induced secular variation in the Earth-Moon dynamics

  • Uchida, Natsuki;Shima, Hiroyuki
    • Coupled systems mechanics
    • /
    • v.7 no.5
    • /
    • pp.611-626
    • /
    • 2018
  • We theoretically consider a possible influence of periodic oceanic tides on non-periodic changes in the dynamics of the Earth and Moon over a long time scale. A particular emphasis will be placed on the contribution from rotating tidal waves, which rotate along the inner edge of an oceanic basin surrounded by topographic boundary. We formulate the angular momentum and the mechanical energy of the rotating tidal wave in terms of celestial parameters with regard to the Earth and Moon. The obtained formula are used to discuss how the energy dissipation in the rotating tidal wave should be relevant to the secular variation in the Earth's spin rotation and the Earth-Moon distance. We also discuss the applicability of the formula to general oceanic binary planets subject to tidal coupling.

The Earth-Moon Transfer Trajectory Design and Analysis using Intermediate Loop Orbits (중개궤도를 이용한 지구-달 천이궤적의 설계 및 분석)

  • Song, Young-Joo;Woo, Jin;Park, Sang-Young;Choi, Kyu-Hong;Sim, Eun-Sup
    • Journal of Astronomy and Space Sciences
    • /
    • v.26 no.2
    • /
    • pp.171-186
    • /
    • 2009
  • Various Earth-Moon transfer trajectories are designed and analyzed to prepare the future Korea's Lunar missions. Minimum fuel trajectory solutions are obtained for the departure year of 2017, 2020, 2022, and every required mission phases are analyzed from Earth departure to the final lunar mission orbit. N-body equations of motion are formulated which include the gravitational effect of the Sun, Earth and Moon. In addition, accelerations due to geopotential harmonics, Lunar J2 and solar radiation pressures are considered. Impulsive high thrust is assumed as the main thrusting method of spacecraft with launcher capability of KSLV-2 which is planned to be developed. For the method of injecting a spacecraft into a trans Lunar trajectory, both direct shooting from circular parking orbit and shooting from the multiple elliptical intermediate orbits are adapted, and their design results are compared and analyzed. In addition, spacecraft's visibility from Deajeon ground station are constrained to see how they affect the magnitude of TLI(Trans Lunar Injection) maneuver. The results presented in this paper includes launch opportunities, required optimal maneuver characteristics for each mission phase as well as the trajectory characteristics and numerous related parameters. It is confirmed that the final mass of Korean lunar explorer strongly depends onto the initial parking orbit's altitude and launcher's capability, rather than mission start time.

Variation of Radius Vector of an Artificial Satellite by Cowell's Method (Cowell 방법에 의한 인공위성의 동경반경의 변화)

  • 신종섭;박재우;최규홍
    • Journal of Astronomy and Space Sciences
    • /
    • v.3 no.1
    • /
    • pp.15-27
    • /
    • 1986
  • Variation of radius vector was computed by Cowell's method. Perturbations due to the Sun, moon, and earth's asymmetrical potential are considered. We summarize our results as follows : I) $J_2$ term does not affect the equatorial orbit. ii) Large perturbation and secular variation on the above orbit are caused by tesseral harmonics. iii) The other perturbations have small effect and periodicity.

  • PDF

Minimum Number of Observation Points for LEO Satellite Orbit Estimation by OWL Network

  • Park, Maru;Jo, Jung Hyun;Cho, Sungki;Choi, Jin;Kim, Chun-Hwey;Park, Jang-Hyun;Yim, Hong-Suh;Choi, Young-Jun;Moon, Hong-Kyu;Bae, Young-Ho;Park, Sun-Youp;Kim, Ji-Hye;Roh, Dong-Goo;Jang, Hyun-Jung;Park, Young-Sik;Jeong, Min-Ji
    • Journal of Astronomy and Space Sciences
    • /
    • v.32 no.4
    • /
    • pp.357-366
    • /
    • 2015
  • By using the Optical Wide-field Patrol (OWL) network developed by the Korea Astronomy and Space Science Institute (KASI) we generated the right ascension and declination angle data from optical observation of Low Earth Orbit (LEO) satellites. We performed an analysis to verify the optimum number of observations needed per arc for successful estimation of orbit. The currently functioning OWL observatories are located in Daejeon (South Korea), Songino (Mongolia), and Oukaïmeden (Morocco). The Daejeon Observatory is functioning as a test bed. In this study, the observed targets were Gravity Probe B, COSMOS 1455, COSMOS 1726, COSMOS 2428, SEASAT 1, ATV-5, and CryoSat-2 (all in LEO). These satellites were observed from the test bed and the Songino Observatory of the OWL network during 21 nights in 2014 and 2015. After we estimated the orbit from systematically selected sets of observation points (20, 50, 100, and 150) for each pass, we compared the difference between the orbit estimates for each case, and the Two Line Element set (TLE) from the Joint Space Operation Center (JSpOC). Then, we determined the average of the difference and selected the optimal observation points by comparing the average values.

A Study on Earth-Moon Transfer Orbit Design

  • No, Tae-Soo;Lee, Ji-Marn;Jeon, Gyeong-Eon;Lee, Dae-Ro;Kim, Ghang-Ho
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.106-116
    • /
    • 2012
  • Optimal transfer trajectories based on the planar circular restricted three body problem are designed by using mixed impulsive and continuous thrust. Continuous and dynamic trajectory optimization is reformulated in the form of discrete optimization problem. This is done by the method of direct transcription and collocation. It is then solved by using nonlinear programming software. Two very different transfer trajectories can be obtained by the different combinations of the design parameters. Furthermore, it was found out that all designed trajectories permit a ballistic capture by the Moon's gravity. Finally, the required thrust profiles are presented and they are analyzed in detail.

A Study on the Analysis of Visibility between a Lunar Orbiter and Ground Stations for Trans-Lunar Trajectory and Mission Orbit (지구-달 전이궤적 및 임무 궤도에서 궤도선과 지상국의 가시성 분석에 관한 연구)

  • Choi, Su-Jin;Kim, In-Kyu;Moon, Sang-Man;Kim, Changkyoon;Rew, Dong-young
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.3
    • /
    • pp.218-227
    • /
    • 2016
  • Korean government plans to launch a lunar orbiter and a lander to the Moon by 2020. Before launch these two proves, an experimental lunar orbiter will be launched by 2018 to obtain key space technologies for the lunar exploration. Several payloads equipped in experimental lunar orbiter will monitor the surface of the Moon and will gather science data. Lunar orbiter sends telemetry and receives tele-command from ground using S-band while science data is sent to ground stations using X-band when the visibility is available. Korean deep space network will be mainly used for S and X-band communication with lunar orbiter. Deep Space Network or Universal Space Network can also be used for the S-band during trans-lunar phase when korean deep space network is not available and will be used for the S-band in normal mission orbit as a backup. This paper analyzes a visibility condition based on the combination of various ground antennas and its mask angles according to mission scenario to predict the number of contacts per day and to build an operational scenario for the lunar orbiter.

Development and Application of Instructional Module for the Conceptual Change of the Earth and Moon's Movement in the Elementary Science Class (초등 과학수업에서 지구와 달의 운동 개념변화를 위한 수업모듈의 개발 및 적용)

  • Son, Junho;Kim, Jonghee
    • Journal of Science Education
    • /
    • v.34 no.1
    • /
    • pp.58-71
    • /
    • 2010
  • The purpose of this study is to categorize preconceived notions by elementary science gifted students about the reason why only one side of the moon is visible and develop an instructional module to correct these notions scientifically. The effectiveness of these modules will then be tested. The participants of this study were 15 (5th and 6th grade students) from Gwangju Metropolitan City and Chonnam Province who passed a gifted student assessment test developed by J university. The student's notions about the reason only one side of the moon is visible were assessed through questionnaires, interviews, and reenactments. Instructional modules to minimize these notions were developed and then improved upon by class reenactments. And then these modules were used to teach a real class with cameras recording the students. Protocols were analyzed using this footage, and emphasis was placed on how the developed class module changed student's misconceptions. The instructional module developed in this study was: student conception assessment writing materials exploration activity stage 1 (moon's orbit) exploration activity stage 2 (moon's rotation) - exploration activity stage 3 (moon's orbit and rotation) - exploration activity stage 4 (verbalizing the moon's orbit and rotation) - exploration activity stage 5 (thinking about moon movement considering earth's rotation - exploration activity stage 6 (relating the earth and moon's movement) and verifying student conception change. An important conclusion of this study was that all 15 students had misconceptions that could be divided into categories A, B, and C. Category A could be separated with more specifics into A-1 and A-2, and C into C-1 and C-2. After the instructional module was utilized, the student categories show positive change in the following stages: Category A at exploration activity stage 1 and 2, Category B at exploration activity stage 3, Category C-1 at exploration activity stage 4 and 5, and Category C-2 at exploration activity stage 6. Category C-1 students immediately changed to Category C-2 after going through a few stages, and their misconceptions were finally corrected after going through exploration activity stage 6. The misconceptions of students in all categories were corrected scientifically after completing stage 6 education. This study proposes that a combined education of reenactments, exploration materials development, and exploration activities by stages will effectively correct misconceptions about the Earth and moon's movement.

  • PDF