• Title/Summary/Keyword: the optimized analysis zone

Search Result 52, Processing Time 0.029 seconds

The Optimized Analysis Zone Districting Using Variogram in Urban Remote Sensing (도시원격탐사에서 베리오그램을 이용한 최적의 분석범위 구역화)

  • Yoo, Hee-Young;Lee, Ki-Won;Kwon, Byung-Doo
    • Korean Journal of Remote Sensing
    • /
    • v.24 no.2
    • /
    • pp.107-115
    • /
    • 2008
  • Recently, a considerable number of studies have been conducted on the high resolution imagery showing the boundaries of objects clearly. When urban areas are analyzed in detail using the high resolution imagery, the size of analyzed zone is apt to be decided arbitrarily. Sufficient prior information about study area makes the decision of analysis zone possible; otherwise, it is difficult to determine the optimized analysis zone using only satellite imagery. In this study, the variograms of artificial simple images are analyzed before applying to the real satellite images. As a result of the analysis of simple images, the sill has an effect on the density of objects and also the size of objects and spacing influence the range. The variograms of real satellite images are analyzed with reference to the result of model test and are applied to determining the optimized analysis zone. This study shows that variogram can be applied to determining effectively the optimized analysis zone in case of no prior information on study area; moreover it will be expected to be used for an index to express the characteristics of urban imagery as well as conventional kriging and simulation.

Comparison analysis of superconducting solenoid magnet systems for ECR ion source based on the evolution strategy optimization

  • Wei, Shaoqing;Lee, Sangjin
    • Progress in Superconductivity and Cryogenics
    • /
    • v.17 no.2
    • /
    • pp.36-40
    • /
    • 2015
  • Electron cyclotron resonance (ECR) ion source is an essential component of heavy-ion accelerator. For a given design, the intensities of the highly charged ion beams extracted from the source can be increased by enlarging the physical volume of ECR zone [1]. Several models for ECR ion source were and will be constructed depending on their operating conditions [2-4]. In this paper three simulation models with 3, 4 and 6 solenoid system were built, but it's not considered anything else except the number of coils. Two groups of optimization analysis are presented, and the evolution strategy (ES) is adopted as an optimization tool which is a technique based on the ideas of mutation, adaptation and annealing [5]. In this research, the volume of ECR zone was calculated approximately, and optimized designs for ECR solenoid magnet system were presented. Firstly it is better to make the volume of ECR zone large to increase the intensity of ion beam under the specific confinement field conditions. At the same time the total volume of superconducting solenoids must be decreased to save material. By considering the volume of ECR zone and the total length of solenoids in each model with different number of coils, the 6 solenoid system represented the highest coil performance. By the way, a certain case, ECR zone volume itself can be essential than the cost. So the maximum ECR zone volume for each solenoid magnet system was calculated respectively with the same size of the plasma chamber and the total magnet space. By comparing the volume of ECR zone, the 6 solenoid system can be also made with the maximum ECR zone volume.

Microstructural Characteristics of T-bar Welding Zone for Shipbuilding and Offshore Plants (조선해양플랜트용 T-bar 용접부의 미세조직학적 특성에 관한 연구)

  • Hwang, Y.J.;Choi, Y.S.;Jang, J.H.;Lee, S.I.;Gong, K.Y.;Lee, DG.
    • Transactions of Materials Processing
    • /
    • v.27 no.5
    • /
    • pp.296-300
    • /
    • 2018
  • T-type and H-type section steels were generally used in shipbuilding and offshore plants and were produced by welding technology. These section steels were produced by handwork, and the supplying amounts can't satisfy the demand amounts of the fabrication companies. In case of fillet welding, there are some gaps in weld-joint region due to no groove preparation processing and it can occur crack initiation in the welded region. It is important to evaluate the microstructural and mechanical properties of welded zone to solve these problems. To satisfy the demand amounts of T-bar parts, automatic welding technology was introduced and several conditions as a function of welding speeds were carried out to improve the manufacturing speed. Heat-affected zone may be affected by variation of heat input and cooling rate through automatic welding speed and welding speed is necessary to be optimized. In this study, fusion zone and heat-affected zone were investigated by microstructural and mechanical analysis and were evaluated whether the welded parts were sound or not.

Optimum Design of the Heating Equipment by Influence of Wind Speed at Cryogenic Temperature (극저온에서 풍속의 영향에 따른 발열기자재의 최적설계)

  • Cho, Hyun Jun;Yun, Won Young
    • Journal of Korean Society for Quality Management
    • /
    • v.48 no.3
    • /
    • pp.463-479
    • /
    • 2020
  • Purpose: The purpose of this study is to evaluate the performance of heating equipments by implementing the extreme environment in which ships navigating the ice zone are exposed and to study and apply the experimental method to infer the optimized design for each factors. Methods: It is required to verify by analysis and experiment how the environment with low temperature and wind speed implemented through the test facility affects the heating walk-way and The optimum design of the heating walk-way in that extreme environment is derived using the Taguchi technique. Results: The results of this study are as follows; It was found the effect on the condition of each factor and derive optimized conditions that satisfy the performance condition of the heating walk-way in extreme use environment. Conclusion: Ships operating in Polar waters require reliable and durable facilities for all environments during sailing.

An Analysis of a Thermo-plastic Melt Flow in the Metering Zone of a Polymer Extruder (고분자 압출기에 있어서 계량부 용융수지의 유동해석)

  • Choi, Man Sung;Kim, Kwang Sun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.11 no.4
    • /
    • pp.7-12
    • /
    • 2012
  • Extrusion is one of the most important operations in the polymer-processing industry. Development of models for extrusion and computer tools offer a route to developing reliable and optimized process designs. The models are based on the analysis of physical phenomena encountered during the process. Balance equations for mass, momentum and energy are fundamental to the problem. A predictive computer model has been developed for the single screw extruders with conventional screws of different geometry. The model takes into account melting zones of the extruder and describes an operation of the extruder system, making it possible to predict mass flow rate of the polymer, pressure and velocity profiles along the extruder screw channel. The simulation parameters are the material and rheological properties of the polymer; the screw pitch, and screw speed.

A Numerical Analysis on Pneumatic Fracturing for in-situ Remediation (비포화대 오염정화 설계를 위한 공압파쇄 모사 해석)

  • Kwon, Mi-Seon;Park, Eun-Gyu;Lee, Cheol-Hyo;Kim, Yong-Seong;Kim, Nam-Jin
    • Journal of Soil and Groundwater Environment
    • /
    • v.15 no.6
    • /
    • pp.53-63
    • /
    • 2010
  • Pneumatic fracturing is an emerging tool to enhance the remediation efficiency of contaminated unsaturated zones by injecting high pressure air and inducing artificial fracture networks. Pneumatic fracturing is reported to be well suited for the cases where the contaminated unsaturated zone thickness is less than 5 m as many contaminated domestic sites in Korea. Nevertheless, there have been almost no studies carried out on the site-specific efficiency and the optimized design of pneumatic fracturing considering the unsaturated zone characteristics of Korea. In this study, we employ numerical simulations to compare the efficiency of pneumatic fracturing on the aspect of the site remediation and the porosity improvement at several hypothetic unsaturated zones composed of four typical soil types. According to the simulation results, it is found that the zone with fine grains soil such as clay and silt shows better efficiency than the zone composed of coarse grains in terms of air flow and porosity enhancements. The results imply that pneumatic fracturing may improve the efficiency of site reclamation by jointly or independently applied to the many contaminated sites in Korea.

A Study on Optimized Blasting Pressure Considering Damage Zone for Railway Tunnel (손상영역을 고려한 철도터널의 최적의 발파압력 선정에 관한 연구)

  • Park, Jong-Ho;Um, Ki-Yung;Cho, Kook-Hwan
    • Proceedings of the KSR Conference
    • /
    • 2011.10a
    • /
    • pp.1162-1170
    • /
    • 2011
  • Since there is 70% of the land in South Korea is forest, tunnel constructions by blasting are common for building railways and roads. The damage to the bedrock and the development of overbreak near the face of the tunnel during the blasting directly affect the safety of the tunnel and the maintenance after the construction. Therefore, there is a need to investigate the damage zone in the bedrock after the blasting. The damage zone changes the properties of the bedrock and decreases the safety. Especially, the coefficient of permeability of the damaged bedrock increases dramatically, which is considered very important in construction. There is a lack of research on the damage that bedrock is received with respect to the amount of explosives in blasting, which is required for the design of optimum support in blast excavation that maximizes the support of the bedrock. Therefore, in this research, numerical analysis was performed based on the field experiment data in order to understand the mechanical characteristics of the bedrock after to the blast load and to analyze the damage that the bedrock receives from the blast load. In addition, a method was proposed for selecting the optimum blast pressure for train tunnel design with respect to the damage zone.

  • PDF

Static behavior of bolt connected steel-concrete composite beam without post-cast zone

  • Xing, Ying;Zhao, Yun;Guo, Qi;Jiao, Jin-feng;Chen, Qing-wei;Fu, Ben-zhao
    • Steel and Composite Structures
    • /
    • v.38 no.4
    • /
    • pp.365-380
    • /
    • 2021
  • Although traditional steel-concrete composite beams have excellent structural characteristics, it cannot meet the requirement of quick assembly and repair in the engineering. This paper presents a study on static behavior of bolt connected steel-concrete composite beam without post-cast zone. A three-dimensional finite element model was developed with its accuracy and reliability validated by available experimental results. The analysis results show that in the normal service stage, the bolt is basically in the state of unidirectional stress with the loss of pretightening can be ignored. Parametric studies are presented to quantify the effects of the post-cast zone, size and position of splicing gap on the behavior of the beam. Based on the studies, suggested size of gap and installation order were proposed. It is also confirmed that optimized concrete slab in mid-span can reduce the requirement of construction accuracy.

Development of Hybrid OCB Beam for the Long-span Building Structures (장경간 건축구조를 위한 하이브리드 OCB보의 개발)

  • Lee, Doo-Sung;Kim, Sang-Yeon;Kim, Tae-Kyun
    • Land and Housing Review
    • /
    • v.6 no.3
    • /
    • pp.129-138
    • /
    • 2015
  • The building structure in Korea is planned to maximize the use of space in recent. The hybrid OCB(Optimized Composite Beam) beam is developed to take advantage of using the space. The OCB beam is composed of the steel H-beam section reinforced by open strands in negative moment zone and the pretensioned PSC concrete section in positive zone. Flexural behavior of typical architectural hybrid OCB beam section was investigated by F.E.M. The 15m, 20m, 30m OCB models were tested on nonlinear material and geometry under static loading system. Following results are obtained from the analysis; 1)The OCB beam develop initial flexural cracking over full service loading. 2)Overall deflections of OCB beam under the service loads are less than those of the allowable limits in KCI Code(2012). 3)The ultimate load capacity get over the nominal strength of the OCB main section. The OCB beam is verified of structural reliability from the finite element analysis.

Numerical Analysis of Unsteady Flow around a Transversely Oscillating Circular Cylinder

  • Moon, Ji-Soo;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.13 no.1
    • /
    • pp.27-33
    • /
    • 2012
  • The relationship between the excitation frequency and the vortex shedding frequency is analyzed during the oscillation of the circular cylinder. Two-dimension unsteady Navier-Stoke's equation is calculated by using the Optimized High Order Compact (OHOC) scheme. The flow condition is Mach number 0.3 and Reynold's number 1000. From the results acquired by calculation, it can be inferred that, when the excitation frequency is near the vortex shedding frequency at the fixed cylinder wake, the oscillation frequency of lift and drag coefficients appears to lock-on. The lock-on refers to a phenomenon in which the aerodynamic coefficient appears as one primary oscillation frequency through excitation and its amplitude is amplified. In the non-lock-on zone, the excitation frequency is not in the lock-on mode anymore and beat is formed in which two or more primary oscillation frequencies of the aerodynamic coefficient are mixed together.