• Title/Summary/Keyword: the maximum principle

Search Result 476, Processing Time 0.024 seconds

Relative static and dynamic performances of composite conoidal shell roofs

  • Bakshi, Kaustav;Chakravorty, Dipankar
    • Steel and Composite Structures
    • /
    • v.15 no.4
    • /
    • pp.379-397
    • /
    • 2013
  • Conoidal shells are doubly curved stiff surfaces which are easy to cast and fabricate due to their singly ruled property. Application of laminated composites in fabrication of conoidal shells reduces gravity forces and mass induced forces compared to the isotropic constructions due to the high strength to weight ratio of the material. These light weight shells are preferred in the industry to cover large column free open spaces. To ensure design reliability under service conditions, detailed knowledge about different behavioral aspects of conoidal shell is necessary. Hence, in this paper, static bending, free and forced vibration responses of composite conoidal shells are studied. Lagrange's equation of motion is used in conjunction with Hamilton's principle to derive governing equations of the shell. A finite element code using eight noded curved quadratic isoparametric elements is developed to get the solutions. Uniformly distributed load for static bending analysis and three different load time histories for solution of forced vibration problems are considered. Eight different stacking sequences of graphite-epoxy composite and two different boundary conditions are taken up in the present study. The study shows that relative performances of different shell combinations in terms of static behaviour cannot provide an idea about how they will relatively behave under dynamic loads and also the fact that the points of occurrence of maximum static and dynamic displacement may not be same on a shell surface.

Burst Mode Symbol Timing Recovery for VDL Mode-2 (VDL Mode-2에 적용 가능한 버스트 모드 심벌 타이밍 복원기)

  • Gim, Jong-Man;Choi, Seung-Duk;Eun, Chang-Soo
    • Journal of Advanced Navigation Technology
    • /
    • v.13 no.3
    • /
    • pp.337-343
    • /
    • 2009
  • In this paper, we proposed a burst mode symbol timing recovery unit that is applicable to the VDL Mode-2 using D8PSK modulation. A method that IIR loop filter is used to minimize symbol timing error is hard to apply to burst mode because its convergence time is long. That is, the fast convergence property is important. In this paper, the proposed method takes one sample which has maximum symbol power after the initial synchronization has been achieved by using preambles. The main principle of operation is that the unit moves one sample clock to advance or retard according to symbol power. We verify that the proposed method is operated well in ${\pm}100$ ppm or greater through the test results between Australia ADS Corp. transmitter and the designed receiver.

  • PDF

THE MAXIMAL VALUE OF POLYNOMIALS WITH RESTRICTED COEFFICIENTS

  • Dubicks, Arturas;Jankauskas, Jonas
    • Journal of the Korean Mathematical Society
    • /
    • v.46 no.1
    • /
    • pp.41-49
    • /
    • 2009
  • Let $\zeta$ be a fixed complex number. In this paper, we study the quantity $S(\zeta,\;n):=mas_{f{\in}{\Lambda}_n}\;|f(\zeta)|$, where ${\Lambda}_n$ is the set of all real polynomials of degree at most n-1 with coefficients in the interval [0, 1]. We first show how, in principle, for any given ${\zeta}\;{\in}\;{\mathbb{C}}$ and $n\;{\in}\;{\mathbb{N}}$, the quantity S($\zeta$, n) can be calculated. Then we compute the limit $lim_{n{\rightarrow}{\infty}}\;S(\zeta,\;n)/n$ for every ${\zeta}\;{\in}\;{\mathbb{C}}$ of modulus 1. It is equal to 1/$\pi$ if $\zeta$ is not a root of unity. If $\zeta\;=\;\exp(2{\pi}ik/d)$, where $d\;{\in}\;{\mathbb{N}}$ and k $\in$ [1, d-1] is an integer satisfying gcd(k, d) = 1, then the answer depends on the parity of d. More precisely, the limit is 1, 1/(d sin($\pi$/d)) and 1/(2d sin($\pi$/2d)) for d = 1, d even and d > 1 odd, respectively.

An Experimental Study on Flame Structure and Combustion Characteristics of Turbulent Diffusion Flame(III) (난류확산화염의 화염구조와 연소특성에 관한 실험적 연구)

  • Jang, In-Gap;Choe, Gyeong-Min;Choe, Byeong-Ryun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.20 no.7
    • /
    • pp.2326-2336
    • /
    • 1996
  • So most practical combustor is considered to the swirl flame, it is very important to examinate swirl flame structure and combustion characteristics. Recently, attention has been paid to the flame diagnostic by radical luminous intensity. For swirl flame structure and combustion characteristic, reverse flow boundary, temperature, ion current and radical luminous intensity were measured in the double-coaxial swirl combustor which was used principle of multi-annular combustor. This study had three experimental condition, S-type, C-type, SC-type. S-type and C-type flames were formed recirculation zone, but SC-type flame wasn't formed. C-type flame had two recirculation zone. The position with maximum value of ion current and CH-radical, temperature and OH-radical had similarity distribution almost. Therefore, it is possible that the macro structure of flame was measured by radical luminous intensity in the high intensity of turbulent combustion field which was formed by swirl.

A Study on Lifting Characteristics of Air-Lift Pump (공기양정(Air-Lift)펌프의 양수특성에 관한 연구)

  • Kim, Dong-Kyun;Lee, Cheol-Jae;Bae, Suk-Tae;Cho, Dae-Hwan
    • Journal of Ocean Engineering and Technology
    • /
    • v.13 no.3B
    • /
    • pp.14-21
    • /
    • 1999
  • As an effective means to convey crushed materials from seabed to onboard ship and to raise hazardous or abrasive liquids, air-lift pump provides a reliable mechanism due to its simple configuration and easy-to-operate principle. The present study is focused on investigation of related performance by the analysis program based on the gas-liquid two-phase flow in circular pipes. The program covers pump operating in isothermal and vertical two-phase flow with Newtonian liquids. It is summarized as important result that an optimum air mass flow rate exists for the maximum lifted liquid mass flow rate in terms of a given submergence rates. The comparison between riser performance of the conveyed liquid flow rate calculated by the computer program and measured data with large scale air lift pump system constructed in 200 meter depth vertical tank reveals similar distribution.

  • PDF

A study on lighting Diffusion system of Daylight Duct System (광덕트방식 자연채광 시스템의 산광부에 대한 연구)

  • Song, Kyu-Ryol;Park, Gyeong-Woo;Ryu, Han-Ki
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2011.05b
    • /
    • pp.99-104
    • /
    • 2011
  • Daylighting system is an alternative to the energy crisis and environment change. And it is possible improvement system of Architectural Space Environment. Accordingly, it is very useful system. Because Daylight Duct System of Daylighting System gives high performance for its price, distribution rate is very high. But Daylighting Duct System is hard to accurate control. Accordingly, it is difficult to maintain continuously Daylight Environment in Interior Spaces. Lighting Diffusion System has been developed that it is Applying the principle of Reflector and prism diffuser for maximize the efficiency of lighting of Daylight Duct Systems through this study. And then compare lighting performance of Existing System and new Lighting Diffusion System through producing a mock-up. Thus, this study was carried out for the purpose of verification for excellence. It is that installed Each Daylighting Duct System for performance evaluation in a laboratory of width 4m, length 10m, height 2.5m. And illuminance was measured at noon on winter solstice(December 22) under clean sky. The actual measurement result was in the following. Newly developed lighting Diffusion system was measured maximum illuminance 399, minimum illuminance 221, average illuminance 141. Synthetically, daylight factor, uniformity factor and illuminance distribution were improved more than existing system. As a result, it was confirmed that was improved lighting Environment in Interior Spaces.

  • PDF

Flow Characteristics of Transitional Boundary Layers on a Flat Plate Under the Influence of Freestream Turbulent Intensity (자유유동 난류강도 변화에 따른 평판위 천이 경계층의 유동특성에 관한 실험적 연구)

  • Shin, Sung-Ho;Jeon, Woo-Pyung;Kang, Shin-Hyoung
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.22 no.9
    • /
    • pp.1335-1348
    • /
    • 1998
  • Flow characteristics in transitional boundary layers on a flat plate were experimentally investigated under three different freestream conditions i. e. uniform flow with 0.1 % and 3.7% freestream turbulent intensity and cylinder-wake with 3.7% maximum turbulent intensity. Instantaneous streamwise velocities in laminar, transitional and turbulent boundary layers were measured by I-type hot-wire probe. For estimation of wall shear stresses on the flat plate, measured mean velocities near the wall were applied to the principle of Computational Preston Tube Method (CPM). Distributions of skin friction coefficients were reasonably predicted in all developed boundary layers. Intermittency profiles, which were estimated using Conditional Sampling Technique in transitional boundary layers, were also consistent with previously published data. It was predicted that the incoming turbulent intensity had more influence on transition onset point and transition process than freestream turbulent intensity existed just over the transition region. It was also confirmed that non-turbulent and turbulent profiles in transitional boundary layers could not be simply treated as Blasius and fully turbulent profiles.

An Alternating Approach of Maximum Likelihood Estimation for Mixture of Multivariate Skew t-Distribution (치우친 다변량 t-분포 혼합모형에 대한 최우추정)

  • Kim, Seung-Gu
    • The Korean Journal of Applied Statistics
    • /
    • v.27 no.5
    • /
    • pp.819-831
    • /
    • 2014
  • The Exact-EM algorithm can conventionally fit a mixture of multivariate skew distribution. However, it suffers from highly expensive computational costs to calculate the moments of multivariate truncated t-distribution in E-step. This paper proposes a new SPU-EM method that adopts the AECM algorithm principle proposed by Meng and van Dyk (1997)'s to circumvent the multi-dimensionality of the moments. This method offers a shorter execution time than a conventional Exact-EM algorithm. Some experments are provided to show its effectiveness.

Evaluation of Mechanical Properties and FEM Analysis on Thin Foils of Copper (구리 박막의 기계적 물성 평가 및 유한요소 해석)

  • Kim Yun-Jae;An Joong-Hyok;Park Jun-Hyub;Kim Sang-Joo;Kim Young-Jin;Lee Young-Ze
    • Tribology and Lubricants
    • /
    • v.21 no.2
    • /
    • pp.71-76
    • /
    • 2005
  • This paper compares of mechanical tensile properties of 6 kinds of copper foil. The beam lead made with copper foil. Different from other package type such as plastic package, Chip Size Package has a reliability problem in beam lead rather than solder joint in board level. A new tensile loading system was developed using voice-coil actuator. The new tensile loading system has a load cell with maximum capacity of 20 N and a non-contact position measuring system based on the principle of capacitance micrometry with 0.1nm resolution for displacement measurement. Strain was calculated from the measured displacement using FE analysis. The comparison of mechanical properties helps designer of package to choose copper for ensuring reliability of beam lead in early stage of semiconductor development.

Performance Comparison Analysis of Frequency Sensing Shock Absorber and Passive Shock Absorber (주파수 감응식 쇽업소버와 수동형 쇽업소버의 성능비교 분석)

  • Noh, Daekyung;Seo, Wonjin;Yun, Jooseop;Jang, Joosup
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.23 no.4
    • /
    • pp.380-387
    • /
    • 2015
  • Various forms of passive shock absorber have developed to supplement performance which is poorer than that of active shock absorber. It is called 'Hybrid Conventional Damper (HCD)'. Frequency sensing shock absorber that this study will cover belongs to the HCD. This study aims to demonstrate that performance of frequency sensing shock absorber is superior than that of passive shock absorber. Study process is as follows. Firstly, analysis models for both passive shock absorber and frequency sensing shock absorber are developed to secure reliability. Then, elements which cause difference of ride quality are found out through comparison of hysteresis characteristics. By comparison of frequency characteristic, furthermore, damping principle of frequency sensing shock absorber is understood. Also, it determines if the absorber performs well even though maximum excitation speed is changed. Finally, the study proves that performance of frequency sensing shock absorber is superior than that of passive shock absorber after comparing change of damping power in excitation condition that various frequencies are mixed.