• 제목/요약/키워드: the exponential function

검색결과 939건 처리시간 0.025초

Adaptive Binary Negative-Exponential Backoff Algorithm Based on Contention Window Optimization in IEEE 802.11 WLAN

  • Choi, Bum-Gon;Lee, Ju-Yong;Chung, Min-Young
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제4권5호
    • /
    • pp.896-909
    • /
    • 2010
  • IEEE 802.11 medium access control (MAC) employs the distributed coordination function (DCF) as the fundamental medium access function. DCF operates with binary exponential backoff (BEB) in order to avoid frame collisions. However it may waste wireless resources because collisions occur when multiple stations are contending for frame transmissions. In order to solve this problem, a binary negative-exponential backoff (BNEB) algorithm has been proposed that uses the maximum contention window size whenever a collision occurs. However, when the number of contending stations is small, the performance of BNEB is degraded due to the unnecessarily long backoff time. In this paper, we propose the adaptive BNEB (A-BNEB) algorithm to maximize the throughput regardless of the number of contending stations. A-BNEB estimates the number of contending stations and uses this value to adjust the maximum contention window size. Simulation results show that A-BNEB significantly improves the performance of IEEE 802.11 DCF and can maintain a high throughput irrespective of the number of contending stations.

RMR을 이용한 풍화암 터널의 천단침하량 예측 평가 (Application for Prediction of Crown Settlements Using RMR in Weathering Rock Tunnels)

  • 김영수;김대만
    • 한국지반공학회논문집
    • /
    • 제25권10호
    • /
    • pp.67-76
    • /
    • 2009
  • 국내 풍화암 터널현장에서 수집한 RMR 평점, RMR* 평점 그리고 천단침하량의 자료를 이용하여 통계적 분석을 실시하였으며, 분석된 자료를 이용하여 회귀분석, 지수함수, 그리고 인공신경망(ANN)으로 천단침하량을 예측하였다. 예측 결과, ANN, 지수함수에 의한 근사함수, 그리고 회귀분석의 천단침하량 예측 순으로 실측치에 근접하였다. 회귀분석으로 추정된 천단침하량의 범위는 매우 넓게 분포하였으며, 계측치에 비하여 과대한 침하량을 예측하였다. 또한 모든 방법에서 RMR 평점을 사용한 예측이 RMR* 평점을 사용하여 예측한 결과보다 계측 침하량에 더 가까운 예측을 하였다.

CHARACTERIZATIONS BASED ON THE INDEPENDENCE OF THE EXPONENTIAL AND PARETO DISTRIBUTIONS BY RECORD VALUES

  • LEE MIN-YOUNG;CHANG SE-KYUNG
    • Journal of applied mathematics & informatics
    • /
    • 제18권1_2호
    • /
    • pp.497-503
    • /
    • 2005
  • This paper presents characterizations on the independence of the exponential and Pareto distributions by record values. Let ${X_{n},\;n {\ge1}$ be a sequence of independent and identically distributed(i.i.d) random variables with a continuous cumulative distribution function(cdf) F(x) and probability density function(pdf) f(x). $Let{\;}Y_{n} = max{X_1, X_2, \ldots, X_n}$ for n \ge 1. We say $X_{j}$ is an upper record value of ${X_{n},{\;}n\ge 1}, if Y_{j} > Y_{j-1}, j > 1$. The indices at which the upper record values occur are given by the record times {u(n)}, n \ge 1, where u(n) = $min{j|j > u(n-1), X_{j} > X_{u(n-1)}, n \ge 2}$ and u(l) = 1. Then F(x) = $1 - e^{-\frac{x}{a}}$, x > 0, ${\sigma} > 0$ if and only if $\frac {X_u(_n)}{X_u(_{n+1})} and X_u(_{n+1}), n \ge 1$, are independent. Also F(x) = $1 - x^{-\theta}, x > 1, {\theta} > 0$ if and only if $\frac {X_u(_{n+1})}{X_u(_n)}{\;}and{\;} X_{u(n)},{\;} n {\ge} 1$, are independent.

Estimation in the exponential distribution under progressive Type I interval censoring with semi-missing data

  • Shin, Hyejung;Lee, Kwangho
    • Journal of the Korean Data and Information Science Society
    • /
    • 제23권6호
    • /
    • pp.1271-1277
    • /
    • 2012
  • In this paper, we propose an estimation method of the parameter in an exponential distribution based on a progressive Type I interval censored sample with semi-missing observation. The maximum likelihood estimator (MLE) of the parameter in the exponential distribution cannot be obtained explicitly because the intervals are not equal in length under the progressive Type I interval censored sample with semi-missing data. To obtain the MLE of the parameter for the sampling scheme, we propose a method by which progressive Type I interval censored sample with semi-missing data is converted to the progressive Type II interval censored sample. Consequently, the estimation procedures in the progressive Type II interval censored sample can be applied and we obtain the MLE of the parameter and survival function. It will be shown that the obtained estimators have good performance in terms of the mean square error (MSE) and mean integrated square error (MISE).

Bayesian estimation for the exponential distribution based on generalized multiply Type-II hybrid censoring

  • Jeon, Young Eun;Kang, Suk-Bok
    • Communications for Statistical Applications and Methods
    • /
    • 제27권4호
    • /
    • pp.413-430
    • /
    • 2020
  • The multiply Type-II hybrid censoring scheme is disadvantaged by an experiment time that is too long. To overcome this limitation, we propose a generalized multiply Type-II hybrid censoring scheme. Some estimators of the scale parameter of the exponential distribution are derived under a generalized multiply Type-II hybrid censoring scheme. First, the maximum likelihood estimator of the scale parameter of the exponential distribution is obtained under the proposed censoring scheme. Second, we obtain the Bayes estimators under different loss functions with a noninformative prior and an informative prior. We approximate the Bayes estimators by Lindleys approximation and the Tierney-Kadane method since the posterior distributions obtained by the two priors are complicated. In addition, the Bayes estimators are obtained by using the Markov Chain Monte Carlo samples. Finally, all proposed estimators are compared in the sense of the mean squared error through the Monte Carlo simulation and applied to real data.

The Effect of Machining Parameters on Tool Electrode Edge Wear and Machining Performance in Electric Discharge Machining (EDM)

  • Cogun, Can;Akaslan, S.
    • Journal of Mechanical Science and Technology
    • /
    • 제16권1호
    • /
    • pp.46-59
    • /
    • 2002
  • The main purpose of this study is to investigate the variation of tool electrode edge wear and machining performance outputs, namely, the machining rate (workpiece removal rate), tool wear rate and the relative wear, with the varying machining parameters (pulse time, discharge current and dielectric flushing pressure) in EDM die sinking. The edge wear profiles obtained are modeled by using the circular arcs, exponential and poller functions. The variation of radii of the circular arcs with machining parameters is given. It is observed that the exponential function models the edge wear profiles of the electrodes, very accurately. The variation of exponential model parameters with machining parameters is presented.

A NEW WAY FOR SOLVING TRANSPORTATION ISSUES BASED ON THE EXPONENTIAL DISTRIBUTION AND THE CONTRAHARMONIC MEAN

  • M. AMREEN;VENKATESWARLU B
    • Journal of applied mathematics & informatics
    • /
    • 제42권3호
    • /
    • pp.647-661
    • /
    • 2024
  • This study aims to determine the optimal solution to transportation problems. We proposed a novel approach for tackling the initial basic feasible solution. This is a critical step toward achieving an optimal or near-optimal solution. The transportation issue is an issue of distributing goods from several sources to several destinations. The literature demonstrates many ways to improve IBFS. In this work, to solve the IBFS, we suggested a new method based on the statistical formula called cumulative distribution function (CDF) in exponential distribution, and inverse contra-harmonic mean (ICHM). The spreadsheet converts transportation cost values into exponential cost cell values. The stepping-stone method is used to identify an optimum solution. The results are compared with other existing methodologies, the suggested method incorporates balanced, and unbalanced, maximizing the profits, random values, and case studies which produce more effective outcomes.

Estimation for the Exponentiated Exponential Distribution Based on Multiply Type-II Censored Samples

  • Kang Suk-Bok;Park Sun-Mi
    • Communications for Statistical Applications and Methods
    • /
    • 제12권3호
    • /
    • pp.643-652
    • /
    • 2005
  • It has been known that the exponentiated exponential distribution can be used as a possible alternative to the gamma distribution or the Weibull distribution in many situations. But the maximum likelihood method does not admit explicit solutions when the sample is multiply censored. So we derive the approximate maximum likelihood estimators for the location and scale parameters in the exponentiated exponential distribution that are explicit function of order statistics. We also compare the proposed estimators in the sense of the mean squared error for various censored samples.

입력 지연을 갖는 이산시간 선형 시스템을 위한 예측기 피드백의 지수적 안정성 (Exponential Stability of Predictor Feedback for Discrete-Time Linear Systems with Input Delays)

  • 최준형
    • 제어로봇시스템학회논문지
    • /
    • 제19권7호
    • /
    • pp.583-586
    • /
    • 2013
  • We consider discrete-time LTI (Linear Time-Invariant) systems with constant input delays. The input delay is modeled by a first-order PdE (Partial difference Equation) and a backstepping transformation is employed to design a predictor feedback controller. The backstepping approach results in the construction of an explicit Lyapunov function, with which we prove the exponential stability of the closed-loop system formed by the predictor feedback. The numerical example demonstrates the design of the predictor feedback controller, and illustrates the validity of the exponential stability.

ULTRA LOW-POWER AND HIGH dB-LINEAR CMOS EXPONENTIAL VOLTAGE-MODE CIRCUIT

  • Duong Quoc-Hoang;Lee Sang-Gug
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 ICEIC The International Conference on Electronics Informations and Communications
    • /
    • pp.221-224
    • /
    • 2004
  • This paper proposed an ultra low-power CMOS exponential voltage-mode circuit using the Pseudo-exponential function for realizing the exponential characteristics. The proposed circuit provides high dB-linear output voltage range at low-voltage applications. In a $0.25\;\mu m$ CMOS process, the simulations show more than 35 dB output voltage range and 26 dB with the linearity error less than $\pm0.5\;dB.$ The average current consumption is less than 80 uA. The proposed circuit can be used for the design of an extremely low-power variable gain amplifier (VGA) and automatic gain control (AGC).

  • PDF