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Estimation for the Exponentiated Exponential Distribution
Based on Multiply Type-II Censored Samples

Suk-Bok Kangl) and Sun-Mi Park2?
Abstract

It has been known that the exponentiated exponential distribution can be used as a
possible alternative to the gamma distribution or the Weibull distribution in many
situations. But the maximum likelihood method does not admit explicit solutions when
the sample is multiply censored. So we derive the approximate maximum likelihood
estimators for the location and scale parameters in the exponentiated exponential
distribution that are explicit function of order statistics. We also compare the proposed
estimators in the sense of the mean squared error for various censored samples.

Keywords : Approximate maximum likelihood estimator, exponentiated exponential distribution,
multiply Type-1I censored sample.

1. Introduction

Perhaps the most important and widely used probability distribution in life-analysis is the
two-parameter exponential distribution with the probability density function (pdf) of the form

gX(x;b",o):%e_(’“")/“, x20, >0, (1.1)
and the cumulative distribution function (cdf) of the form
Gx(x;0,0)=1—e ¥ x>0 6>0. (1.2)

Gupta and Kundu (1999) considered a three-parameter distribution which is a particular case

of the exponentiated Weibull distribution originally proposed by Mudholkar et al. (1995) with
cdf

Fx(x;6,0)=[Gx(x:60,0)]", x>0, 1>0. (1.3)
If X has the distribution function (1.3), then the corresponding density function is
fx(x:0,0) =Agx(x;0, )[Gx(x: 0,01 ", x>0, 1>0. (1.4)
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The three-parameter gamma and three-parameter Weibull distributions are the most popular
distributions for analyzing any lifetime data or skewed data. Gupta and Kundu (1999) showed
that many properties of this distribution are quite similar to those of a gamma or Weibull
family, therefore this distribution can be used as an alternative to the gamma distribution or
the Weibull distribution in many situations.

Mudholkar and Srivastava (1993) introduced the exponentiated Weibull family which is the
extended Weibull. Mudholkar and Hutson (1996) discussed the exponentiated Weibull
distribution and its moments. They compared the exponentiated Weibull distribution with some
well known distributions. Kundu et al. (2005) considered the problem of discriminating
between the log-normal and generalized exponential distributions by using the ratio of the
maximized likelihood.

Gupta and Kundu (2001) studied some properties of a new family of distributions, namely
exponentiated exponential distribution, discussed in Gupta et al. (1998). They considered
two-parameter exponentiated exponential distribution which is special cases of the generalized
exponential distribution with the location parameter 6=0.

We consider the two-parameter exponentiated exponential distribution with the location and
the scale parameters when the shape parameter A is known. For example, the density
function of a random variable X with A=2 is

fx(x) = 2g5(x)Gx(x)

(1.5)
2 {5 e[ 5ZBY], 15, 050
and cdf is
Fx(x)=[GX(x)]2=[1—exp{— x;ﬁ}]z’ x>0, ¢>0. (1.6)

Multiply Type-II censored sampling arises in life-testing experiments when the failure times
of some units were not observed due to mechanical or experimental difficulties. Also, another
multiply censored samples arise naturally when some units failed between two points of
observation with exact times of failure of these units unobserved.

It has been noted that in most cases, but for a few exceptions such as exponential and
Rayleigh distributions, the maximum likelihood method does not provide explicit estimators
based on complete and censored samples. Especially, when the sample is multiply censored,
the maximum likelihood method does not admit explicit solutions. Hence it is desirable to
develop approximations to this maximum likelihood method which would provide us with
estimators for the location and scale parameters that are explicit functions of order statistics.

The approximate maximum likelihood estimating method was first developed by
Balakrishnan (1989) for the purpose of providing the explicit estimators of the scale parameter
in Rayleigh distribution. Kang et al. (1997) proposed the approximate maximum likelihood
estimators (AMLEs) of the parameters in the two-parameter exponential distribution with
Type-II censoring. Kang et al. (2004) obtained the AMLE for the scale parameter of the
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Weibull distribution based on multiply Type-II censored samples.

In this paper, we derive the AMLEs of the scale parameter ¢ and the location parameter 6
based on multiply Type-II censored sample. We also compare the proposed estimators in the
sense of the mean squared error (MSE) for various censored samples.

2. Approximate Maximum Likelihood Estimators

We assume that = items are put on a life test, but only ath,..., ath failures are
observed, the rest are unobserved or missing, where a,,..., a, are considered to be fixed. If

this censoring arises, the scheme is known as multiply Type-II censoring scheme.
Let us assume that the following multiply Type-II censored sample from a sample of size
n is
X 0n<X gn< <X gn 20
where 1<g,<a,< <a,<n.
Let ay=0, a;y=n+1, F(x,.,)=0, F(x,, .,)=1, then the likelihood function based
on the multiply Type-II censored sample (2.1) is given by
L= n!}lif(xa,:n)jﬁﬁ [F(x“’:"()a/_._Féf_‘f‘_“f))!] - (2.2)

By putting Z;,= (X ,,— 8)/o, the log-likelihood function can be rewritten as

L= C-sho- 3 nl(g;=a,_,~ D] +(a, ~DIF(Z,.)+(n=a)[l~F(Z,.,)] .
= 23

£ RS2 00 + e = a— DIIF(Z )~ F(Z, )

where Az)=2(e ?*—e¢ %) and F(z)=(1—e %) are the pdf and the cdf of the standard
exponentiated exponential distribution, respectively.

2.1 AMLEs of the Scale Parameter When the Location Parameter is Known

We can derive the AMLEs of the scale parameter ¢ when the location parameter 6 is
known.

From equation (2.3), on differentiating with respect to ¢ in turn and equation to zero, we
obtain the estimating equations as

dlnL _ l f(Zal:n) ]‘(Zax:n)
do - 0[S+(dl—1) F(Za,:n) Zaltn_(n_as) I_F(Zas:n) Zas:n
N f,(Za:n) s f(Zai:n)Za,:n_ﬂZa;_l:n)Zaj_lzn
+]§ f(Z ai:n) Za,_:n+]z§(aj—aj_l—l) F(Za,.;n) ___F(Z aj_l:n) (211)

=0.
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Since the likelihood equations is very complicated, the equation (2.1.1) does not admit an
explicit solution for o.
Let

Z

EiZF—l(P,')=“1n(1_\/77_i) where p;,= ntl’ a;=1—p;.

We may expand the following functions in Taylor series around the points &,, &,., &..

J

and (£,,&, ), respectively.
ﬂzal:n)

RZ,,,) 2 ean™athZ o (21.2)
RZ 43n) N

T-R2,,,) Zen=01t 02 o (2.13)
f’(Za-:n)
RZ o) Zain™ % 02 ain (2.1.4)

]‘(Zan)Z a;n _f(lej—U")Z
F(Z ai;n) - F(Z ai-l:”)

L aj+ /SjZaﬁn + 7;'211,--11" (215)
where

a,

B &2[, f%&p]
= — pal f(éal)— pal

2
m=;[ﬂgH&f@Q—i%Qfm

2 2
f= —to| g+ L

S
|

2
Lfe+e,re)-2adg,

-+
~ y{ Uumw
1= TRey | T DT RE)

_ 1 |. _Lre )y ]
&—ﬂagpwa+gfwg e €

=
|

£ (&)= &, 2F (&)

— 2 __

4= K pﬂ;‘_pﬂi—l

B= 55— [1-KAE)+ 6,1 (6,)]

vi= =5 [ KAE, ) + &, F(&,)]
& RE)—&, fE, )

K= pai—pai—l

By substituting the equations (2.1.2), (2.1.3), (2.1.4), and (2.15) into the equation (2.1.1), we
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obtain the approximate likelihood equation for ¢ as follows;

a};naL ~ —%[s+(a1—1)(a1+312a1:n) —(n—a)x;+8,Z,.,)

+ ]; (ij“l" 8]2 a,-:n) -+ ];(di_ aj_l— 1)(a,+ BIZ ain -+ ')’/Z a;‘«l:”)

(2.16)
=0,
Upon solving the equation for ¢, we can derive an estimator of ¢ as follows;
= Bljlcle (2.1.7
1

where
A, =s+(a;—Da; —(n—ay)x, + jng + lgz(aj—aj_l— Da;
B1 = ——(al—l)BlXalz,,—(n—as)alX ”::”_,gan”i:”_,Z}(aj_ aj_l—l)(ﬂan,:n+ YIX a;_ltn)

Cl = (al—l)ﬂl —(n— 05)81 +1261; +;§(ai_ai’l_l)(ﬁj + 7/) .

We can also approximate these functions by

%ZZ—); = ay+ ByZ oy (218)
_1%—) =5t 052 om (2.1.9)
];((ZZ :_f,,")) = %y 057 oy (2.1.10)
RZ f()Z—F()Z ) Tt Bl 012 e e (2.1.11)
F(Zaf,)zzi}:“:(n; oy T eyt By ot Y952 o, in (2.1.12)
where ’
a,= 1’1. AE) 8,7 (&, )+i§,§lé ]
By = plal :f(E )— i;ﬁl]
= e e - L .|
8= ala, FlE)+ fzf]i ) ]

[F(&,)1° ]
xzj: f(E )[f (E ) Ealf”(Ea,)_*- _/(E ) éa,
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- ey LG ]
%= f(E.)[f )= Re,)

ay= o [+ KORE) —£,7(8,) ]
r4E,) ]
b= pa,—pa,l[f(sa)_ Da— D,
_ R IE,, )
Y [0,,— pa,;_;]z
t= G [+ ORE, ) — 6 S (&)
AEIAE, )
/92]= - [pa-—pa»_ ]2 = _71,'
= 1 . fz(é“‘—l)
757 paj—pa;—l f(éa,_,)+ pai_pai—l

By substituting the equations (2.1.8), (2.1.9), (2.1.10), (2.1.11), and (2.1.12) into the equation
(2.1.1), we also obtain the approximate likelihood equation for ¢. Upon solving this equation
for ¢, we can derive another estimator of ¢ as follows;

—B,+V BZ—4sC,

9 (2.1.13)

‘0\‘ 20 =
where

BZ = (al—l)a2Xal:n—(n—as)x2X a,:n+ gle'Xa-:n-i_ iz(a'_aj—l—l)(aliXa,»:n—aZiXa,-_l:n)
~[(@1=Day —(n—a e+ Fxy+ Sy a—a, 1~ Day = ay) |6
) = (al—lmz(Xa,m—e>2—<n—as>6z<Xa,m—e>2+§]62,~<xa,m—0>2

+ 33— 4= D[BY(X 4y = 02+ 27 (X 10— O) (X 40 = ) = 750(X = 0],

2.2 AMLEs of Two Parameters

Consider the exponentiated exponential distribution with the density function (1.5) when two
parameters are unknown.

From equation (2.3), the likelihood equation for 4 is obtained as

dinL _ AZ 4:n) RZ 4:n)
FY) = __[(al 1) F(Z ) —(n— ag ) l—F(Za ”)
f(Z” RZ ) —RZ 4 i)
+] + Zz(a ].) F(Za ”) F(Za,»_l.n) (221)

= 0.
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Equation (2.2.1) does not admit an explicit solution for . But we can expand the following
function as follows;

RZ . )—RZ, ..)
RZ, ) —FZ, Wt BiZant 15Z 0 (22.2)

where
@y=a;— @y, By= By~ By, 15=71" Y-
By substituting the equations (2.1.8), (2.1.9), (2.1.10), and (2.2.2) into the equation (2.2.1), we
obtain the approximate likelihood equation for & as follows;

aTlngll— = _%[ (al—l)(a2+BZZa1:n) - (n_(ls)(ifz+ 6ZZas:n)

+ 2 (x2j+ 52;‘2 a,»:n) + zslz(d,"‘ a; 11— 1)(03j+ ﬂst apn + 7’3,'Z a,_‘:n) (2.2.3)
= 7=
=0.
Upon solving the equations (2.1.6) and (2.2.3), we can derive an estimator of & as follows;
5. _E
5~-E (2.2.4)

where

A,C
— L3+
D= -G

A;B

I -

E= —25 B

A3 = (al—l)afz _(n~ as)xz+;=§;xzj-*-;:z;(a,-—aj_l—l)a?ﬂ-

B3 = (al_l)BzXal:n'—(n_as)SZX a,:n+ 262}Xaj:n+]2z(ai_aj_l_1)(33}‘.< a’.:n+ 73;‘< ai_lzn)
= =

03 == (al'—l)Bz —(n_ as)az+]=ilazj+]§(aj_aj_l_l)(/93j + 73}') .

Now, we will obtain the AMLEs of the scale parameter o.
From equations (2.1.7) and (2.2.4), we can derive an estimator of ¢ as follows;
e B, 1 C,8 .
1

Second, from equations (2.1.13) and (224), we can derive another estimator of ¢ as
follows;

(2.2.5)

— 2 __
Gy = ax 1222 456y (2.2.6)

where

FZ = (al—l)azXal;,l—(n— dS)JCZX a,:n+ ZS‘iZZan,-:n-F Zsz(aj_a/'—l_1)(alea,'?n—a’2an,-_1m)
1= 1=

~[(a=Dar— =+ Fy+ Fila,— a0~ ey~ )| T
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G, = (4, DB (X 4y =0 )V~ (n—0a)8(X ;.0 — 79\)2+1262,-(X ain— 0)?

+ 23(8= 8, 1= D[By(X 4 = TV +27(X 4y = T (X 4y = B =1i(X = 0.

3. Comparison of the Proposed Estimators

It's difficult to find the moments of all proposed estimators. So we simulate the MSEs of
the proposed estimators through the Monte Carlo simulation method. The simulation procedure
is repeated 10,000 times for the sample size » = 20(10)50 and various choices of censoring.
These values are given in Table 1.

From Table 1, the estimator &, is more efficient than 7, in the sense of MSE when the
location parameter ¢ is known. But the estimator G, is more efficient than o, in the

sense of MSE when the location parameter & is unknown. For fixed sample size, the MSE
increases generally as % increases.

Since the estimator o, is the linear function of the available order statistics, we can
calculate the moments by the moments of the order statistics. But 0, is the quadratic form
and nonlinear function of the available order statistics and hence we can’t calculate the
moments of 7 ,. The ‘estimator & 1 is more simple and more efficient estimator than the
estimator 0 4.

When the location parameter is unknown, ¢, is also the linear function of the available

order statistics and o, is a quadratic form. But in this case G, is more efficient than 7y
in the sense of MSE.

Table 1. The relative MSEs for the estimators of the location parameter 6 and the scale
parameter o.

6 is known. 0 is unknown.
n k a i — — — o~ —~
010 O 0 o1 09
0 1~20 0.027575 0.029973 0.042931 0.042132 0.037636
1~18 0.029225 0.031639 0.044082 0.046289 0.041024
2 3~20 0.027657 0.030184 0.047536 0.044759 0.044137
2~19 0.028448 0.031036 0.040609 0.043904 0.042529
2~17 0.030462 0.033129. 0.042088 0.048915 0.047265
4 4~19 0.028582 0.030927 0.059747 0.051219 0.050726
20 3~18 0.029309 0.031818 0.049506 0.049539 0.048764
2~4 7~14 16~20 0.027668 0.034769 0.039691 0.041774 0.041375
3~17 0.030519 0.033093 0.050793 0.053033 0.052169
5 4~18 0.029387 0.031728 0.061286 0.054083 0.053540
2~6 10~19 0.028521 0.033717 0.040399 0.043832 0.042822
6 4~17 0.030603 0.032991 0.063241 0.058221 0.057621
126~912~1517~20 0.027722 0.038166 0.040917 0.041430 0.038740
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Table 1. (continued)

6 is known. g is unknown.
n k a]' —~ —~ - —~ .
01 0y 0 on 0
0 1~30 0.018494 0.019858 0.023708 0.027286 0.025043
1~28 0019278 | 0020671 | 0024060 | 0028949 | 0.026499
2 3~30 0018504 | 0019927 | 0024775 | 0028757 | 0.028426
2~29 0018842 | 0020294 | 0021884 | 0027802 | 0.027108
2~27 0.019568 0.021060 0.022298 0.029469 0.028687
4 4~29 0.018872 0.020246 0.029434 0.031350 0.031114
30 3~28 0019290 | 0020738 | 0025225 | 0030537 | 0.030171
2~4 7~14 16~30 0018499 | 0022210 | 0021599 | 0027074 | 0.026880
3~27 0.019567 0.021021 0.025549 0.031408 0.031003
5 4~28 0.019319 0.020726 0.029834 0.032545 0.032301
2~6 10~19 21~30 0.018520 0.022474 0.021654 0.027082 0.026939
6 4~27 0.019597 0.021000 0.030290 0.033552 0.033282
126~912~1517~30 0.018537 0.023685 0.022832 0.026922 0.025135
0 1~40 0.013389 0.014197 0.015262 0.019134 0.017725
1~38 0013756 | 0014574 | 0015453 | 0019970 | 0.018471
2 3~40 0013393 | 0014254 | 0015533 | 0019863 | 0.19648
2~39 0013570 | 0014435 | 0014033 | 0019429 | 0.018982
2~37 0.013953 0.014842 0.014196 0.020221 0.019747
4 4~39 0.013577 0.014389 0.017764 0.021321 0.021191
40 3~38 0.013761 0.014640 0.015770 0.020742 0.020510
2~4 7~14 16~40 0.013391 0.015670 0.013881 0.018998 0.018379
3~37 0013957 | 0014844 | 0015863 | 0021162 | 0.20920
5 4~38 0013763 | 0014595 | 0017926 | 0021822 | 0.21690
2~6 10~19 21~40 001338 | 0015701 | 0013880 | 0.019004 | 0018346
6 4~37 0.013959 0.014798 0.018046 0.022280 0.022142
126~912~15 17~40 0.013409 0.016464 0.014755 0.018913 0.017652
0 1~50 0010951 | 0011503 | 0011308 | 0015393 | 0.014402
1~48 0.011198 0.011750 0.011421 0.015935 0.014891
2 3~50 0.010957 0.011537 0.011407 0.015778 0.015601
2~49 0.011070 0.011657 0.010332 0.015440 0.015098
2~47 0011326 | 0011917 | 0010435 | 0015966 | 0.015601
4 4~49 0011071 | 0011608 | 0012810 | 0016741 | 0016622
50 3~48 0011205 | 0011785 | 0011534 | 0016326 | 0016135
2~4 7~14 16~50 0.010955 | 0012388 | 0010240 | 0015173 | 0.014911
3~47 0.011329 0.011905 0.011601 0.016605 0.016403
5 4~48 0.011204 0.011748 0.012884 0.017042 0.016922
2~6 10~19 21~50 0.010958 0.012574 0.010251 0.015178 0.015045
6 ' 4~47 0.011327 0.011867 0.012967 0.017344 0.017214
126~9 12~15 17~50 0.010955 0.012918 0.010919 0.015237 0.014163
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