• Title/Summary/Keyword: the earth

Search Result 15,236, Processing Time 0.042 seconds

A Study on the Measuring about the Coefficient of Earth Pressure at Rest 1 (정지토압계수 측정에 관한 연구 1)

  • 송무효
    • Journal of Ocean Engineering and Technology
    • /
    • v.15 no.4
    • /
    • pp.92-100
    • /
    • 2001
  • It is very important to determine the coefficient of earth pressure at rest accurately in order to estimate the behavior of soil structure. For estimation of K/sub 0/-value depending upon the stress history of dry sand, a new type of K/sub 0/-oedeometer apparatus is devised, and the horizontal earth pressure is accurately measured. For this study, 2 types of one-cyclic K/sub 0/-Loading/unloading models have been studied experimentally using four relative densities of the sand. The results obtained in this test are as follows : K/sub on'/ the coefficient of earth pressure at - rest for virgin loading is a function of the angle of internal friction Φ' of the sand and is determined as K/sub on/=1 - 0.914 sin Φ', K/sub ou'/ the coefficient of earth pressure at rest for virgin unloading is a function of K/sub on/ and over consolidation ratio(OCR), and is determined as K/sub ou/=K/sub on/(OCR)K/sup a/. The exponent α, increases as the relative density increases. K/sub or'/ the coefficient of earth pressure at rest for virgin reloading decreases in hyperbola type as the vertical stress, σ/sub v/’, increases. And, the stress path at virgin reloading leads to the maximum prestress point, independent upon the value of the minimum unloading stress. The gradient of this curve, m/sub r/ increases as OCR increases.

  • PDF

Analysis of Argumentation Structure in Students' Writing on Socio-scientific issues (SSI): Focusing on the Unit of Climate Change in High School Earth Science I

  • Yoo, Bhyung-ho;Kwak, Youngsun;Park, Won-Mi
    • Journal of the Korean earth science society
    • /
    • v.41 no.4
    • /
    • pp.405-414
    • /
    • 2020
  • In this study, we analyzed the development of high school students' argumentation through their writings on socio-scientific Issues (SSI) related to the Climate Change Unit in the Earth Science I curriculum. Pre- and post-writing assignments on the two main causes of global warming were analyzed and compared. In addition, an in-depth interview of the focus group was conducted with 7 students who showed a distinct change in the level of argumentation. According to the results, 16 of 52 students remained at the same argumentation level in pre- and post-writing assignments, and students remaining at Level 2 among five levels had difficulty in understanding the Toulmin's argument pattern (TAP) structure. Using the TAP structure, 29 of 52 students demonstrated increased argumentation levels in the post-writing assignments. The conclusions include that writing lessons on SSI using the TAP in Earth science classes can improve the level of high school students' argumentative writing, and that the level of students' argumentation can develop with the elaboration of their level of falsification. Also, it is suggested that the science curriculum should increase students' science writing competencies by specifying science writing as one of the goals.

Numerical investigation on the wind stability of super long-span partially earth-anchored cable-stayed bridges

  • Zhang, Xin-jun;Yao, Mei
    • Wind and Structures
    • /
    • v.21 no.4
    • /
    • pp.407-424
    • /
    • 2015
  • To explore the favorable structural system of cable-stayed bridges with ultra-kilometer main span, based on a fully self-anchored cable-stayed bridge with 1400 m main span, a partially earth-anchored cable-stayed bridge scheme with the same main span is designed. Numerical investigation on the dynamic characteristics, aerostatic and aerodynamic stability of both two bridge schemes is conducted, and the results are compared to those of a suspension bridge with similar main span, and considering from the aspect of wind stability, the feasibility of using partially earth-anchored cable-stayed bridge in super long-span bridges with ultra-kilometer main span is discussed. Moreover, the effects of structural design parameters including the length of earth-anchored girder, the number of auxiliary piers in side span, the height and width of girder, the tower height etc on the dynamic characteristics, aerostatic and aerodynamic stability of a partially earth-anchored cable-stayed bridge are analyzed, and their reasonable values are proposed. The results show that as compared to fully self-anchored cable-stayed bridge and suspension bridge with similar main span, the partially earth-anchored cable-stayed bridge has greater structural stiffness and better aerostatic and aerodynamic stability, and consequently becomes a favorable structural system for super long-span bridges with ultra-kilometer main span. The partially earth-anchored cable-stayed bridge can achieve greater stiffness and better wind stability under the cases of increasing the earth-anchored girder length, increasing the height and width of girder, setting several auxiliary piers in side span and increasing the tower height.

Comparison of multi-planetary systems including hot-Super Earth with and without exo-Jupiter

  • Choi, Beom Kyu;Yoon, Tae Seog
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.90.1-90.1
    • /
    • 2015
  • Almost hot-Super Earths ($R_p$~1 to $4R_{earth}$ orbital period < 100 days) are around Sun-like stars. But our solar system does not have hot-Super Earth. Andre et al. 2015 has explained this phenomenon by that Jupiter blocks migration of super earth. We have found a multi-planetary system KOI-94 with exo-Jupiter and hot-Super Earth from NASA exoplanet archive data (http://exoplanetarchive.ipac.caltech.edu). In this study, within multi-planetary systems including hot-Super Earth, we compared those with and without exo-Jupiter using their host star and exoplanet parameters, such as metallicity [Fe/H], $T_{eff}$ and $R_*/R_p$.

  • PDF

Earth Structure Modeling Using Neural Network (신경회로망을 이용한 대지구조 모델링)

  • Lee Jong Pil;Ji Pyeong Shik;Lim Jae yoon
    • Proceedings of the KIEE Conference
    • /
    • summer
    • /
    • pp.569-571
    • /
    • 2004
  • Earth parameters are essential to design and analysis of earth. Because of ambiguities of soil, it is not easy to calculate earth parameters, such as, resistivities and depth of each layer. The traditional mathematical method for earth parameters has a problems deciding initial value to obtain optimal solution. Also, it needs to a lot of time to be calculated to obtain reasonable solution. This paper presents new approach to estimate earth parameters using neural networks. Validity of proposed method is verified by case studies.

  • PDF

The Method to Select the Optimal Particle Size of Earth by Optimum Micro-filler (최밀충전에 의한 흙의 적정입도 선정 방법)

  • Hwang, Hey Zoo;Kang, Nam Yi
    • KIEAE Journal
    • /
    • v.13 no.6
    • /
    • pp.137-143
    • /
    • 2013
  • The purpose of this study is to suggest optimum micro-filler experiment method to select the optimal particle size of earth for using in earth construction works and test this suggestion through compressive strength measurement. According to the results of selecting the method to choose the optimum micro-filler mixing of earth and sand, three-stage filling(plate tamping) showed relatively high results and so was estimated to be the proper filling method. According to the results of optimum micro-filler experiment of earth and sand by the maximal sizes of sand, between 80% and 90% showed the highest result values. The larger the maximum size of sand was, the lower the addition ratio of sand was in optimum micro-filler mixing. According to the results of compressive strength experiment by the particle sizes of earth and sand, 90% in the addition ratio of sand showed the highest results, and so tended to be similar to the results of unit volume weight experiment.

The Impact of a Professional Development Program on Urban Teachers' Lesson Planning Using Urban Geologic Sites

  • Nam, Youn-Kyeong
    • Journal of the Korean earth science society
    • /
    • v.32 no.5
    • /
    • pp.474-484
    • /
    • 2011
  • This study presents how a professional development program (PD) of K-12 teachers affects participants' use of the earth system approach and their perceptions of using the urban environment for their science teaching and lesson unit development. This study utilized mixed methods to collect and analyze the data. Eleven urban teachers' pre-post lessons (45 lessons) were analyzed quantitatively using a lesson plan analysis tool, modified by the author, and their lesson reflections were analyzed qualitatively. The findings of this study show that the PD program influences the teachers to choose more topics and content knowledge based on the earth system approach and to assess the topics and content knowledge with more appropriate methods. Specifically, the teachers use more urban environmental factors/topics in their post lesson to teach the environmental topics of urban area. However, according to the statistical analysis of pre-and postlesson plan scores, the accuracy of the earth system knowledge that participants used in their lessons did not change significantly (p<0.05) (Table 4), which means that the PD program did not affect the improvement of the teacher's content knowledge in earth system science. Implications of this study are discussed.

Reduction of Horizontal Earth Pressure on Retaining Structures by a Synthetic Compressible Inclusion (압축성재료를 이용한 콘크리트 옹벽의 수평토압 저감방안에 대한 연구)

  • Yoo, Ki-Cheong;Paik, Young-Shik;Kim, Ho-Bi;Kim, Khi-Woong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.4 no.1
    • /
    • pp.19-28
    • /
    • 2003
  • Current methods for lateral thrust calculations are based on the classical formulations of Rankine or Coulomb. However, the previous studies indicate that lateral earth pressures acting on the wall stem, which is the function of deformation parameters of the backfill, are close to the active condition only in the top half of the wall stem and in the lower half of the wall stem, the lateral earth pressures are significantly in excess of the active pressures. This paper presents the compressible inclusion function of EPS which can results in reduction of static earth pressure by accomodating the movement of retained soil. A series of model tests were conducted to evaluate the reduction of static earth pressure using EPS inclusion and determine the optimum stiffness of EPS. Also, field test was conducted to evaluate the reduction of static earth pressure using EPS inclusion. Based on field test it is found that the magnitude of static earth pressure can be reduced about 20% compared with classical active earth pressure.

  • PDF

COMS Normal Operation for Earth Observation Mission

  • Cho, Young-Min
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.3
    • /
    • pp.337-349
    • /
    • 2013
  • Communication Ocean Meteorological Satellite (COMS) for the hybrid mission of meteorological observation, ocean monitoring, and telecommunication service was launched onto Geostationary Earth Orbit on June 27, 2010 and it is currently under normal operation service on $128.2^{\circ}$ East of the geostationary orbit since April 2011. In order to perform the three missions, the COMS has 3 separate payloads, the meteorological imager (MI), the Geostationary Ocean Color Imager (GOCI), and the Ka-band antenna. The MI and GOCI perform the Earth observation mission of meteorological observation and ocean monitoring, respectively. For this Earth observation mission the COMS requires daily mission commands from the satellite control ground station and daily mission is affected by the satellite control activities. For this reason daily mission planning is required. The Earth observation mission operation of COMS is described in aspects of mission operation characteristics and mission planning for the normal operation services of meteorological observation and ocean monitoring. And the first one-year normal operation results after the In-Orbit-Test (IOT) are investigated through statistical approach to provide the achieved COMS normal operation status for the Earth observation mission.

Effect of Alkaline-Earth Oxide Additives on Flexural Strength of Clay-Based Membrane Supports

  • Lee, Young-Il;Eom, Jung-Hye;Kim, Young-Wook;Song, In-Hyuck
    • Journal of the Korean Ceramic Society
    • /
    • v.52 no.3
    • /
    • pp.180-185
    • /
    • 2015
  • Low-cost ceramic membrane supports with pore sizes in the range of $0.52-0.62{\mu}m$ were successfully prepared by uniaxial dry compaction method using inexpensive raw materials including kaolin, bentonite, talc, sodium borate, and alkaline-earth oxides in carbonate forms (e.g., $MgCO_3$, $CaCO_3$, and $SrCO_3$). The prepared green supports were sintered at $1000^{\circ}C$ for 8 hr in air. The effect of alkaline-earth oxide additives on the flexural strength of clay-based membrane supports was investigated. The porosity of the clay-based membrane supports was found to be in the range of 33-34%. The flexural strength of the clay-based membrane supports with 1% alkaline-earth carbonates was found to be in the range of 42.8-52.7 MPa. The addition of alkaline-earth carbonates to clay-based membrane supports resulted in large increases (47-80%) in the flexural strength of the membrane supports, compared to that of membrane supports without alkaline-earth carbonates. The typical flexural strength of the clay-based membrane support with 1% $SrCO_3$ was 52.7 MPa at 33.8% porosity.