• Title/Summary/Keyword: the dynamics of image

Search Result 216, Processing Time 0.024 seconds

Monitoring System of Sandbar Variation of Estuary using Video-based Technique (비디오를 이용한 하구 사주 변화 모니터링 시스템(I) - Hardware System 구축을 중심으로 -)

  • Yoon, Han-Sam;Ryu, Seung-Woo;Kang, Tae-Soon
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.4
    • /
    • pp.630-636
    • /
    • 2008
  • Monitoring the location of the shoreline and foreshore changes through the time and core tasks are carried out by coastal engineers for a wide range of research. With the advent of digital imaging technology, the shore-based video monitoring system provides many advantages than field surveys. This study presents the development and construction(installation) of video monitoring system to assist the study of coastal and shoreline dynamics and evolution, especially sandbar variation at the Nakdong river estuary. For the purpose of this study, at high building near the Dadea-po beach (St. 2) and Jinudo(island) (St. 1) foreshore region, where coastline variation is highly active, 5 video cameras installed; the coastline movement has monitored since Aug. 2007 using the systems. From the image results of video camera, the 'Spit' type sandbar appears at the foreshore region of Doyodeung and Dadea-po beach and measured the deposition process of Jinudo(island) foreshore region. As a result, the monitoring system using video-based technique built in this study would be able to identify changes in the area and width of shoreline and beach of Nakdong river estuary.

Identification of boundary migration during the wound healing through the visualization of cell migrations (세포 운동 가시화를 통한 상처 치유 과정 내 경계 이동의 규명)

  • Jeong, Hyuntae;Lee, Jaesung;Shin, Jennifer Hyunjong
    • Journal of the Korean Society of Visualization
    • /
    • v.18 no.2
    • /
    • pp.10-17
    • /
    • 2020
  • The curvature of wound boundaries has been identified as a key modulator that determines a type of force responsible for cell migration. While several studies report how certain curvatures of the boundary correlate with the rate at which the wound closes, it remains unclear how these curvatures are spatiotemporally formed to regulate the healing process. We investigated the dynamic changes in the boundary curvatures by visualizing cell migration patterns. Locally, cells at the convex boundary continuously move forward with transmitting kinetic responses behind to the cells away from the boundary, and cells at the concave boundary exhibit dramatic contracting motion, like a purse-string, when they accumulate enough negative curvatures to gain the thrust toward the void. Globally, the dynamics of boundary geometries are controlled by the diffusive flow of cells driven by the density gradient between the wound area and the cell layer.

Airflow over low-sloped gable roof buildings: Wind tunnel experiment and CFD simulations

  • Cao, Ruizhou;Yu, Zhixiang;Liu, Zhixiang;Chen, Xiaoxiao;Zhu, Fu
    • Wind and Structures
    • /
    • v.31 no.4
    • /
    • pp.351-362
    • /
    • 2020
  • In this study, the impact of roof slope on the flow characteristics over low-sloped gable roofs was investigated using steady computational fluid dynamics (CFD) simulations based on a k-ω SST turbulence model. A measurement database of the flow field over a scaled model of 15° was created using particle image velocimetry (PIV). Sensitivity analyses for the grid resolutions and turbulence models were performed. Among the three common Reynolds-averaged Navier-Stokes equations (RANS) models, the k-ω SST model exhibited a better performance, followed by the RNG model and then the realizable k-ε model. Next, the flow properties over the differently sloped (0° to 25°) building models were determined. It was found that the effect of roof slope on the flow characteristics was identified by changing the position and size of the separation bubbles, 15° was found to be approximately the sensitive slope at which the distribution of the separation bubbles changed significantly. Additionally, it is suggested additional attention focused on the distributions of the negative pressure on the windward surfaces (especially 5° and 10° roofs) and the possible snow redistribution on the leeward surfaces.

Flow characteristics validation around drain hole of fan module in refrigerator (냉장고 팬 모듈의 물빠짐 구멍 주변 유동 특성 검증)

  • Jinxing, Fan;Suhwan, Lee;Heerim, Seo;Dongwoo, Kim;Eunseop, Yeom
    • Journal of the Korean Society of Visualization
    • /
    • v.20 no.3
    • /
    • pp.102-108
    • /
    • 2022
  • In the fan module of the intercooling refrigerator, a drain hole structure was designed for stable drainage of defrost water. However, the airflow passing through the drain hole can disturb flow features around the evaporator. Since this backflow leads to an increase in flow loss, the accurate experimental and numerical analyses are important to understand the flow characteristics around the fan module. Considering the complex geometry around the fan module, three different turbulence models (Standard k-ε model, SST k-ω model, Reynolds stress model) were used in computational fluid dynamics (CFD) analysis. According to the quantitative and qualitative comparison results, the Standard k-ε model was most suitable for the research object. High-accuracy results well match with the experiment result and overcome the limitation of the experiment setup. The method used in this study can be applied to a similar research object with an orifice outflow driven by a rotating blade.

The Optical Measurement and Quantitative Analysis of Algesia in Spodoptera litura Larva

  • Chen, Ying-Yun;Chang, Rong-Seng;Tsai, Mi-Yin;Chen, Der-Chin
    • Journal of the Optical Society of Korea
    • /
    • v.19 no.2
    • /
    • pp.169-174
    • /
    • 2015
  • Muscle vibration measurement has long been an unique scientific study, in general, and the direct reaction of animals to feel pain (algesia), either from vascular or muscle contraction, is a complex perceptual experience. Thus this paper proposes a way to measure animal algesia quantitatively, by measuring the changes in muscle vibration due to a pinprick on the surface of the skin of a Spodoptera litura larva. Using the laser optical triangulation measurement principle, along with a CMOS image sensor, linear laser, software analysis, and other tools, we quantify the subtle object point displacement, with a precision of up to $10{\mu}m$, for our chosen Spodoptera litura larva animal model, in which it is not easy to identify the tiny changes in muscle contraction dynamics with the naked eye. We inject different concentrations of formalin reagent (empty needle, 12% formalin, and 37% formalin) to obtain a variety of different muscle vibration frequencies as the experimental results. Because of the high concentrations of reagent applied, we see a high frequency shift of muscle vibration, which can be presented as pain indices, so that the algesia can be quantified.

A Bibliometric Study of E-commerce Reputation

  • WIJAYA, Tony
    • The Journal of Industrial Distribution & Business
    • /
    • v.13 no.6
    • /
    • pp.1-7
    • /
    • 2022
  • Purpose: This study aims to investigate an overview of the reputation of e-commerce from 2001-2021. Research design, data and methodology: This study uses a bibliometrics technique involving published results from the Scopus database. Keyword tracking uses the terms e-commerce + reputation. The data collected meets the criteria for the type of journal publication. Data was collected using the Publish or Perish (PoP) program and exported into VOSviewer. Bibliometrics examines certain fields of science based on several components such as author and co-author, citation and co-citation, keywords related to theme mapping, origin, and source of publication. Data was collected using the Publish or Perish (PoP) program and exported into VOSviewer. Results: The results show the total citations from 118 papers are 1429, with citations per paper of 12.11 and citations per year of 68.05. The trend of publications from 2001-2021 shows the dynamics of increasing or decreasing, but this trend is still developing. Conclusions: This paper also presents articles that have contributed greatly to the study of e-commerce reputation, the most productive authors, and clustered themes regarding e-commerce reputation. Reputation is an important area of e-commerce research. Reputation is also essential factors for e-commerce in facing business competition and needs to be a consideration for digital business practitioners.

Visualization and Computational Analysis for Flow around Rotating Blades (회전하는 블레이드 주위의 유동가시화 및 전산유동해석)

  • Ki, Hyun;Choi, Jong-Wook;Kim, Sung-Cho
    • Journal of the Korean Society of Visualization
    • /
    • v.8 no.1
    • /
    • pp.39-45
    • /
    • 2010
  • The optimal design is needed for the blade geometry of the quad-rotor blades which is mainly used for Unmanned Aerial Vehicle. To do this, it is important to analyze the wakes under the blades. In the present study, the flow around the rotating blades was analyzed using PIV(Particle Image Velocimetry) and CFD(Computational Fluid Dynamics). The maximum axial velocity was measured at about 60% position toward the radial direction of the blade. The positions of vorticities in the test section obtained by PIV and CFD were turned out to be almost alike. The values in the difference of pressure coefficients at the upper and the lower blades were increased depending on the radial direction. Then, the values were decreased at the blade tip. The data of the flow analysis in the present study are expected to be served as the design of blades and ducts for the thrust improvement in the future.

Study on Flow Interaction between Bubble and Phase Change Material according to Injection Location (주입 위치에 따른 기포와 상변화물질의 유동 상호 작용에 관한 연구)

  • Min Hyeok Kim;Yun Young Ji;Dong Kee Sohn;Han Seo Ko
    • Journal of the Korean Society of Visualization
    • /
    • v.21 no.3
    • /
    • pp.75-84
    • /
    • 2023
  • In this study, we conducted analysis of bubble dynamics and flow of liquid phase change material(PCM) using shadowgraphy and particle image velocimetry(PIV). Characteristics of internal flow varied depending on locations of injection when solid PCM was liquefied from heated vertical wall. When bubbles rose immediately, they exhibited elliptical shape and zigzag trajectory. In contrast, when bubbles rose after merging at the bottom of solid PCM, with equivalent diameter for the inter-wall distance of 0.64 or greater, they showed a jellyfish shape and strong rocking behavior. It was observed by the PIV that the small ellipse bubbles made most strong flow inside the liquid PCM. Furthermore, the flow velocity was highest in the case of front injection, as the directions of temperature gradients and bubble-driven flow were aligned. The results underscore the significant influence of injection location on various characteristics, including bubble size, shape, rising path of bubbles, and internal flow.

Biomechanical Evaluation of a Manual Wheelchair with Forward. Reverse Propulsion (정.역 구동 방식 수도 휠체어의 인체공학적 성능 분석)

  • Shin, Eung-Soo;Lee, Hee-Tae;Ahn, Seong-Chul
    • Proceedings of the KSME Conference
    • /
    • 2001.06c
    • /
    • pp.464-469
    • /
    • 2001
  • This work provides the biomechanical evaluations of a manual wheelchair with a bi-directional driving system. The new propulsion strategy can be accomplished by employing a special gear system that converts the oscillatory motion of a handrim into the unidirectional output motion of a wheel. A main feature of the forward. backward propulsion is to supply continuous driving torque without break. Motion. analysis has been performed through 2-dimensional image processing for measuring the kinematic properties of the upper arm and fore arm. Then, the inverse dynamics analysis has been done for obtaining the joint torques, the handrim forces and input/output powers. Results show that the output power by the forward. reverse propulsion is almost twice as much as that by conventional propulsion. Also, the new propulsion is expected to reduce the fatigues and injuries at arm joints by employing more muscle groups for movement. In conclusion, the forward. reverse propulsion can greatly improve the performances of manual wheelchairs by providing better mobility as well as by guaranteeing several advantages from a biomechanical viewpoint. Future development of a manual wheelchair optimized for the bi-directional propulsion will further improve the propulsion performances.

  • PDF

Accelerating Magnetic Resonance Fingerprinting Using Hybrid Deep Learning and Iterative Reconstruction

  • Cao, Peng;Cui, Di;Ming, Yanzhen;Vardhanabhuti, Varut;Lee, Elaine;Hui, Edward
    • Investigative Magnetic Resonance Imaging
    • /
    • v.25 no.4
    • /
    • pp.293-299
    • /
    • 2021
  • Purpose: To accelerate magnetic resonance fingerprinting (MRF) by developing a flexible deep learning reconstruction method. Materials and Methods: Synthetic data were used to train a deep learning model. The trained model was then applied to MRF for different organs and diseases. Iterative reconstruction was performed outside the deep learning model, allowing a changeable encoding matrix, i.e., with flexibility of choice for image resolution, radiofrequency coil, k-space trajectory, and undersampling mask. In vivo experiments were performed on normal brain and prostate cancer volunteers to demonstrate the model performance and generalizability. Results: In 400-dynamics brain MRF, direct nonuniform Fourier transform caused a slight increase of random fluctuations on the T2 map. These fluctuations were reduced with the proposed method. In prostate MRF, the proposed method suppressed fluctuations on both T1 and T2 maps. Conclusion: The deep learning and iterative MRF reconstruction method described in this study was flexible with different acquisition settings such as radiofrequency coils. It is generalizable for different in vivo applications.