• Title/Summary/Keyword: the distribution of water flow

Search Result 1,188, Processing Time 0.03 seconds

Numerical Study on the Cooling Characteristics of a Passive-Type PEMFC Stack (수동공기공급형 고분자 전해질 연료전지 스택에서의 냉각특성에 대한 전산해석 연구)

  • Lee, Jae-Hyuk;Kim, Bo-Sung;Lee, Yong-Taek;Kim, Yong-Chan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.8
    • /
    • pp.767-774
    • /
    • 2010
  • In a passive-type PEMFC stack, axial fans operate to supply both oxidant and coolant to cathode side of the stack. It is possible to make a simple system because the passive-type PEMFC stack does not require additional cooling equipment. However, the performance of a cooling system in which water is used as a coolant is better than that of the air-cooling system. To ensure system reliability, it is essential to make cooling system effective by adopting an optimal stack design. In this study, a numerical investigation has been carried out to identify an optimum cooling strategy. Various channel configurations were applied to the test section. The passive-type PEMFC was tested by varying airflow rate distribution at the cathode side and external heat transfer coefficient of the stack. The best cooling performance was achieved when a channel with thick ribs was used, and the overheating at the center of the stack was reduced when a case in which airflow was concentrated at the middle of the stack was used.

Experimental Study of Flip-Bucket Type Hydraulic Energy Dissipator on Steep slope Channel (긴구배수로 감세공의 Filp Bucket형 이용연구)

  • 김영배
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.13 no.1
    • /
    • pp.2206-2217
    • /
    • 1971
  • Spillway and discharge channel of reservoirs require the Control of Large volume of water under high pressure. The energies at the downstream end of spillway or discharge channel are tremendous. Therefore, Some means of expending the energy of the high-velocity flow is required to prevent scour of the riverbed, minimize erosion, and prevent undermining structures or dam it self. This may be accomplished by Constructing an energy dissipator at the downstream end of spillway or discharge channel disigned to dissipated the excessive energy and establish safe flow Condition in the outlet channel. There are many types of energy dissipators, stilling basins are the most familar energy dissipator. In the stilling basin, most energies are dissipated by hydraulic jump. stilling basins have some length to cover hydraulic jump length. So stilling basins require much concrete works and high construction cost. Flip bucket type energy dissipators require less construction cost. If the streambed is composed of firm rock and it is certain that the scour will not progress upstream to the extent that the safety of the structure might be endangered, flip backet type energy dissipators are the most recommendable one. Following items are tested and studied with bucket radius, $R=7h_2$,(medium of $4h_2{\geqq}R{\geqq}10h_2$). 1. Allowable upstream channel slop of bucket. 2. Adequate bucket lip angle for good performance of flip bucket. Also followings are reviwed. 1. Scour by jet flow. 2. Negative pressure distribution and air movement below nappe flow. From the test and study, following results were obtained. 1. Upstream channel slope of bucket (S=H/L) should be 0.25<H/L<0.75 for good performance of flip bucket. 2. Adequated lip angle $30^{\circ}{\sim}40^{\circ}$ are more reliable than $20^{\circ}{\sim}30^{\circ}$ for the safety of structures.

  • PDF

An Experimental Study on the Distributions of Residual Head and Discharge Rate along Collector Well Laterals of a Model Riverbed Filtration (하상여과의 집수관 모형에서 잔류수두와 유입율 분포에 관한 실험연구)

  • Ahn, Kyu-Hong;Moon, Hyung-Joon;Kim, Kyung-Soo;Kim, Seung-Hyun
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.27 no.12
    • /
    • pp.1305-1310
    • /
    • 2005
  • As a way to the optimum design of the collector well lateral in riverbed filtration, experiments were performed using sand tanks which were connected to form a model lateral system. Measured were the residual hydraulic heads along the laterals, the discharge rates at each sand tank and the production rates at the collector well while the model laterals were operated with various scenarios of changing parameters including water level of the collector well, the lateral diameter and length, and the hydraulic conductivity of the sand. Results showed that riverbed filtration could be more efficient when the resistance in the lateral was weak compared with the resistance in the sand, which was indicated by the more flattened distribution of the residual hydraulic heads along the lateral. Results also showed that the discharge rate increased exponentially with the approach to the collector well, and that the exponent increased as the lateral diameter decreased and/or the hydraulic conductivity of the sand increased. It was also seen that the well production increased with the increase in the lateral length and diameter although the marginal productivity decreased. It could be concluded that the axial flow velocity in the lateral was an important factor governing the efficiency of a lateral in riverbed filtration and that the maximum entrance velocity to the collector well, over which the efficiency decreased drastically, was about 1 m/sec under the conditions of this study.

Simulation for the Estimation of Design Parameters in an Aquifer Thermal Energy Storage (ATES) Utilization System Model (대수층 축열 에너지(ATES) 활용 시스템 모델의 설계인자 추정을 위한 시뮬레이션)

  • Shim Byoung-Ohan
    • Journal of Soil and Groundwater Environment
    • /
    • v.10 no.4
    • /
    • pp.54-61
    • /
    • 2005
  • An aquifer thermal energy storage (ATES) system can be very cost-effective and renewable energy sources, depending on site-specific parameters and load characteristics. In order to develop the ATES system which has certain hydrogeological characteristics, understanding the thermohydraulic process of an aquifer is necessary for a proper design of an aquifer heat storage system under given conditions. The thermohydraulic transfer for heat storage was simulated according to two sets of simple pumping and waste water reinjection scenarios of groundwater heat pump system operation in a two-layered aquifer model. In the first set of the scenarios, the movement of the thermal front and groundwater level was simulated by changing the locations of injection and pumping wells in a seasonal cycle. However, in the second set the simulation was performed in the state of fixing the locations of pumping and injection wells. After 365 days simulation period, the shape of temperature distribution was highly dependent on the injected water temperature and the distance from the injection well. A small temperature change appeared on the surface compared to other simulated temperature distributions of 30 and 50 m depths. The porosity and groundwater flow characteristics of each layer sensitively affected the heat transfer. The groundwater levels and temperature changes in injection and pumping wells were monitored and the thermal interference between the wells was analyzed to test the effectiveness of the heat pump operation method applied.

Scientific Significances of the Seongryu Cave (Natural Monument No. 155) (성류굴(천연기념물 제155호)의 과학적 중요성)

  • Kim, Lyoun(Ryeon);Woo, Kyung Sik;Kim, Bong Hyeon;Park, Jae Suk;Park, Hun Young;Jeong, Hae Jeong;Lee, Jong Hee
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.236-259
    • /
    • 2010
  • The examination of sediment distribution in Seongryu Cave shows existence of rocks contrasting with Joseon Supergroup contrary to existing knowledge. Contrasting especially with the Taeback Group, Daegi Formation, Hwajeol Formation, and Dongjeom Formation has been observed. Unlike Taeback area where Dumugol Formation and Makgol Formation are observed on top of Dongjeom Formation, the rocks of this area are not clear in its separation between the two, so that it was named Geunnam Formation. Seongryu Cave has been developed in this Ordovician Geunnam Formation of the Joseon Supergroup. The cave, mostly horizontal, runs in the NE-SW direction, and contains three lakes. The main passage and branches are about 330 m and 540 m, respectively, making the total length of the cave about 870 m (show cave area = 270 m). Through underwater examination, about 85 m-long underwater passage was newly discovered. Various speleothem such as soda straw, stalactite, stalagmite, column, flowstone, rimston, cave shield, cave coral, curtain, bacon sheet, cave pearl, cave flower, helictite and calcite raft can be found in the cave. There are sections with constant flow of cavern water, but the majority of cavern water in the cave come from the ceiling. The most important discovery in this study is the presence of various speleothem in the submerged part of cave passages. Traces of corrosion and/or erosion can be observed in the speleothem in the submerge passage.

Bacterial Distribution and Relationship with Phytoplankton in the Youngsan River Estuary (영산강 하구의 박테리아 분포 및 식물플랑크톤과의 관계)

  • Kim, Se Hee;Sin, Yong Sik
    • Journal of Marine Life Science
    • /
    • v.4 no.2
    • /
    • pp.53-62
    • /
    • 2019
  • Heterotrophic bacteria are a major member of the microbial loop in the marine ecosystem and play an important role in the biogeochemical cycle decomposing organic matter. Therefore study of bacterial variation is important to understand the material cycle and energy flow of marine ecosystems. We investigated the monthly variations of bacteria and environmental factors in the Youngsan River estuary, and the correlation between bacteria and phytoplankton biomass (chlorophyll-a) including size-structure. As a result, bacteria of the Youngsan River estuary were higher in the surface than in the bottom layer, and higher in the summer than in winter. And the closer to the dike, the abundance increased, and it increased to the peaks in August, September, and June 2019 at the station closest to the dike. The chlorophyll-a also increases at the stations and time when the bacterial abundance was high and they correlates positively displaying no difference between size fractions. The results indicate that organic matter derived from phytoplankton has an effect on bacterial variation but no size-dependent effects. In addition, the seasonal pattern of bacteria increasing in proportion to the water temperature suggests the effect of water temperature on the growth of bacteria. No association of bacterial abundance variation with nutrient supply due to freshwater input was observed. In this study, dissolved oxygen was depleted and hypoxia was observed for a short time when a strong stratification was not developed. This may be resulted from the supply of organic matter from phytoplankton and the consumption of oxygen due to bacterial decomposition.

Change of Fish Fauna and Community Structure in the Naeseong Stream around the Planned Yeongju Dam (영주댐 예정지를 중심으로 한 내성천의 어류상과 군집구조의 변화)

  • Kang, Yeong-Hoon;Kim, Sang-Ki;Hong, Gi-Bung;Kim, Han-Sun
    • Korean Journal of Ecology and Environment
    • /
    • v.44 no.2
    • /
    • pp.226-238
    • /
    • 2011
  • Ichthyological fauna and community structure were surveyed in the Naeseong Stream around the planed Yeongju Dam, Yeongju City, Gyeongsangbuk-do from April 2007 to October 2009, During the survey period, 27 species (25 genera, 10 families) were collected. Cyprinid fish comprised 63.0% (17 species) and cobitid fish comprised 7.4% (2 species). Ten of the 27 species (37.0%) were endemic species. The dominant and subdominant species based on the number of individuals was Zacco platypus (43.2%) and Zacco koreanus (15.8%), respectively. Introduced from the other native rivers and exotic fish were Opsariichthys uncirostris amurensis, Leiocassis ussuriensis, and Micropterus salmoides (11.1%). The declining population density of Zacco koreanus and its subdominant status represents a change, since, up until the mid 1990's, it was widely distributed throughout the area and was the dominant species. The distribution area of Zacco koreanus decreased in size; by 2009, it no longer inhabited the lower reaches of the Naeseong Stream. On the other hand, Zacco platypus remained the dominant species throughout the area, except for the upper-reaches of the water-course. Gobiobotia naktongensis inhabited all areas of Naeseong Stream, which mainly has a sandy bottom. Analyses of the fish community revealed species diversity, even-ness and dominant indices were 0.881, 0.615, and 0.230 respectively. These results showed that the main river, in which the water width and flow are abundant and which has various habitats, has a higher species diversity (0.829) than the tributary (0.735).

A Stiudy on the Deveplopment of Algorithm for the Representative Unit Hydrograph of a Watershed as a Closed Linear System. (폐선형계로 본 유역대표 단위유량도의 유도를 위한 알고리즘의 개발에 관한 연구)

  • 김재한;이원환
    • Water for future
    • /
    • v.13 no.2
    • /
    • pp.35-47
    • /
    • 1980
  • An algorithm is developed to derive a representative I hr-unit hydrograph through an analysis of rainfall-runoff relations of a watershed as a closed system. For the base flow seperation of a flood hydrograph the multi-deflection method is proposed herein, which gace better results compared with those by the existing empirical methods. A modified $\Phi$index method is also proposed in this stidy to determine the time distribution rainfall excess of a rainstorm, which is essetially a modification of the commonly used $\Phi$index method of rainfall seperation. With the so-obtained rainfall excess hyetograph and the direct runoff hydrograph a trial and error computation of the ordinates of 1 hr-unit hydrograph was executed in such a manner that the synthesized flood hydrograph closely approximates the observed one, thus resulting a unit hydrograph of a piecewise exponential function type. To verify the validity of this study the 1 hr-unit hydrographs for the Imha and Dongchon in Nagdong River basin, and Yongdam in Geum River basin were derived by this algorithm, and the results were compared with those by the conventional synthetic unit hydrograph method and the Nakayasu method. Besides, the validity of this stiudy was also tested by comparing the observed hydrograph with the one computed by applying the unit hydrograph to a specific rainfall event. To generalize the result of this study a computer program, consisited of a main and three subprograns (for rainfall excess estimation, convolution summation, and sorting), is developed as a package, which is believed to be applicable to other watersheds for the similar purpose as those in this study.

  • PDF

Numerical Experiment of Driftwood Generation and Deposition Patterns by Tsunami (쓰나미에 의한 유목의 생성과 퇴적패턴의 수치모의실험)

  • Kang, Tae Un;Jang, Chang-Lae;Lee, Nam Joo;Lee, Won Ho
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.165-178
    • /
    • 2021
  • We studied driftwood behaviors including generation and deposition in a tsunami using a numerical simulation. We used an integrated two-dimensional numerical model, which included a driftwood dynamics model. The study area was Sendai, Japan. Observation data collected by Inagaki et al. (2012) were used to verify the simulation results by comparing them with driftwood deposition patterns. A simplified model was developed to consider the threshold of driftwood generation by the drag force of water flows. To consider the volume of driftwood generated, we estimated the total wood number in the study area using Google Earth. Therefore, we simulated more than 13,000 pieces of driftwood that were generated and transported inland from approximately 300,000 trees that were growing in the forest. The final distribution of the driftwood was similar to the observation data. The reproducibility of the generation and deposition patterns of driftwood showed good agreement in terms of longitudinal deposition pattern. In the future, a sensitivity analysis on driftwood parameters, such as the size of the wood, boundary conditions, and grid size, will be implemented to predict the travel patterns of driftwood. Such modeling will be a useful methodology for disaster prediction based on water flow and driftwood.

The Conversion of Methane with Oxygenated Gases using Atmospheric Dielectric Barrier Discharge (배리어방전을 이용한 메탄전환반응에서 함산소 가스가 전환율 및 생성물변화에 미치는 영향)

  • Lee Kwang-Sik;Yeo Yeong-Koo;Choi Jae-Wook;Lee Hwa-Ung;Song Hyung-Keun;Na Byung-Ki
    • Journal of Energy Engineering
    • /
    • v.15 no.1 s.45
    • /
    • pp.52-59
    • /
    • 2006
  • This paper examined the conversion of methane to hydrogen and other higher hydrocarbons using dielectric barrier discharge with AC pulse power. Two metal electrodes of a coaxial-type plasma reactor were separated by gas gap and an alumina tube. The inner electrode was located inside the alumina tube. The alumina tube was located inside the stainless steel tube, which was used as the outer electrode. Effect of feed gas composition (methane, oxygen, argon, water and helium), flow rate, applied frequency, input volt-age on methane conversion and product distribution were studied. The major products of plasma chemical reactions were ethylene, ethane, propane, buthane, hydrogen, carbon monoxide and carbon dioxide. The increment of applied voltage and the usage of inert gas as the background (helium and argon) enhanced the selectivity of hydrocarbons and methane conversion. The addition of water in the feed stream enhanced the conversion of methane and yield of hydrogen. Higher voltage leads to higher yield of $C_2H_6,\;C_3H_8,\;C_4H_{10}$ and yield or $C_2H_2\;and\;C_2H_4$ appeared highly in lower voltage.