• Title/Summary/Keyword: the degradation products

Search Result 765, Processing Time 0.031 seconds

Degradation of the Herbicide Alachlor by Soil Microorganisms II. Synthesis and Phytotoxicity of Major Degradation Products (제초제 Alachlor 의 토양미생물에 의한 분해 II. 주요 분해산물의 합성과 식물독성)

  • Lee, Jae-Koo
    • Korean Journal of Environmental Agriculture
    • /
    • v.3 no.1
    • /
    • pp.1-9
    • /
    • 1984
  • Two of the degradation products of alachlor in soil. product 1, 2,6-diethyl-N-(methoxymethyl) acetanilide and product 2,2-hydroxy-2',6'-diethyl-(methoxymethyl) acetanilide were synthesized from alachlor reacting with 3N-hydrochloric acid in the presence of zinc powder at room temperature and a saturated sodium bicarbonate solution at $90^{\circ}C$ for 78 hr, respectively. At the concentrations of both $5{\times}10^{-4}M\;and\;1{\times}10^{-3}M$, product 2 exhibited almost the same phytotoxicity to rice seedlings, in particular, as alachlor, whereas product 1 lost its phytotoxic effectiveness. It seems that substitution of chlorine atom by hydroxyl group did not affect the phytotoxicity of alachlor, whereas substitution by hydrogen atom did.

  • PDF

Comparative Study of Intramuscular Phospholipid Molecular Species in Traditional Chinese Duck Meat Products

  • Wang, D.Y.;Zhu, Y.Z.;Xu, W.M.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.10
    • /
    • pp.1441-1446
    • /
    • 2009
  • Composition of intramuscular lipids, phospholipid classes and phospholipid molecular species in traditional Chinese duck meat products was investigated. Free fatty acids and phospholipids were identified and quantified by gas and high performance liquid chromatography, and phospholipid molecular species were determined by mass spectrometry. The results showed that raw duck meat had high quantities of phosphatidylethanolamine and phosphatidylcholine. The percentages of phospholipid classes decreased during three kinds of processing of duck meat products. A selective degradation of phospholipid molecular species with polyunsaturated fatty acids was found in dry-cured duck, but was not found in roasted and water-boiled duck products.

The Study on Degradation of Azo Dyes by Proteus sp. ST-1 (Proteus sp. ST-1에 의한 Azo계 색소의 분해에 관한 연구)

  • Park, Hyung-Sook;Ha, Sang-Tae;Lee, Young-Guen
    • Journal of Environmental Science International
    • /
    • v.5 no.1
    • /
    • pp.71-81
    • /
    • 1996
  • Direct Sky Blue-5B is an Azo dye known as general for staining of textile and leather, etc., and as materials which are difficult to be biodegraded in nature. The bacterium strain which could degrade direct Sky Blue-5B was isolated from activated sludge of dyeing factory and identified as Proteus sp. by experiment on morphological, cultural and biochemical characteristics, and so named Proteus sp. ST-1. The optimum condition of the strain for degradation of Sky Blue-5B were at about 35$^{\circ}C$ and PH 7~8. The strain had been capable of degradation with organic nitrogen effectively and had completely degraded 200mg/1 of the dye within 12hrs at 37$^{\circ}C$. The enzyme system related to degradation of Azo dye may be intracellular, and so degraded the dye after absorption into cell. The degradation products of Sky Blue-5B by Proton sp. 57-1 were analyzed by Gas Chromatography /Mass Spectrometry and Spectrophotomer, from this observation, it may be infered that the strain degraded the dye directly without any mediate.

  • PDF

Industrial Research and Development on the Production Process and Quality of Cultured Meat Hold Significant Value: A Review

  • Kyu-Min Kang;Dong Bae Lee;Hack-Youn Kim
    • Food Science of Animal Resources
    • /
    • v.44 no.3
    • /
    • pp.499-514
    • /
    • 2024
  • Cultured meat has been gaining popularity as a solution to the increasing problem of food insecurity. Although research on cultured meat started later compared to other alternative meats, the industry is growing rapidly every year, with developed products evaluated as being most similar to conventional meat. Studies on cultured meat production techniques, such as culturing new animal cells and developing medium sera and scaffolds, are being conducted intensively and diversely. However, active in-depth research on the quality characteristics of cultured meat, including studies on the sensory and storage properties that directly influence consumer preferences, is still lacking. Additionally, studies on the combination or ratio of fat cells to muscle cells and on the improvement of microbiota, protein degradation, and fatty acid degradation remain to be conducted. By actively investigating these research topics, we aim to verify the quality and safety of cultured meats, ultimately improving the consumer preference for cultured meat products.

Cytotoxicities of Ginseng Saponins and their Degradation Products against some Cancer Cell Lines

  • Baek, Nam-In;Kim, Dong-Seon;Lee, You-Hui;Park, Jong-Dae;Lee, Chun-Bae;Kim, Shin-Il
    • Archives of Pharmacal Research
    • /
    • v.18 no.3
    • /
    • pp.164-168
    • /
    • 1995
  • In order to elucidate the cytotoxicity-structure correlation of ginseng-derived components, several prosapogenins and sapogenins were prepared from Korean red ginseng (Panax ginseng) saponins by acid hydrolysis or alkaline cleveage, and their chemical structures were identified by a combination of spectral and physical methods. Some of these degradation products showed the cytotoxic activities against various cancer cell lines, A549, SK-OV-3, SK-Mel-2, P388, L1210 and K562. The significant difference in cytotoxicity between stereoisomers was not found and the activity was inversely proportional to the number of sugars linked to sapogenins. Diol-type prosapogenins and sapogenins showed higher cytotoxicity than triol-type ones.

  • PDF

Degradation Characteristics of Aqueous MEA Solution by Corrosion Products and Absorption Conditions (흡수 조건 및 부식 생성물에 의한 MEA 수용액의 변성 특성)

  • NAM, SUNGCHAN;SONG, YOONAH;BAEK, ILHYUN;YOON, YEOIL;YOU, JEONGKYUN;LEE, CHANGHA
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.27 no.3
    • /
    • pp.290-297
    • /
    • 2016
  • The absorbent loss due to degradation in $CO_2$ capture process using aqueous alkanol amine solution has adverse effect on the economics of overall process. The degradation causes absorbent loss, equipment corrosion, foaming, adhesive material producing and viscosity increase in operation. In this study, the degradation characteristics of $CO_2$ capture process using MEA (monoehtanolamine) under various conditions such as $O_2$ partial pressure, $CO_2$ loading and absorbent temperature. The effects of iron, which generated from the equipment corrosion, on absorbent degradation were studied using $Fe_2SO_4$ containing MEA solution. The produced gases were analyzed by FT-IR(Fourier Transform Infrared Spectrophotometer) and the specifically measured $NH_3$ concentration was used as a degradation degree of aqueous MEA solution. The experiments showed that the higher $CO_2$ loadings (${\alpha}$), $O_2$ fraction ($y_{O2}$) and reaction temperature enhanced the more degradation of aqueous MEA solution. Comparing other operation parameters, the reaction temperature most affected on the degradation. Therefore, it could be concluded that the above parameters affects on degradation should be considered for the selections of $CO_2$ absorbent and operating conditions.

Effects of Bioremediation Products on the Oil Degradability (생물정화용 제품의 유류분해능 비교)

  • 김상진;신수경
    • Korean Journal of Microbiology
    • /
    • v.33 no.2
    • /
    • pp.157-162
    • /
    • 1997
  • Recently the bioremediation technology has been widely used to recover the oil contaminated environments The application of bioremediation agents to oil polluted environments became common and thus many kinds of commercial products were imported into domestic market. In Korea, howcver. the standardization of bioremediation products quality is not yet established and results of efficacy test .ire scarce. In this study five oil spill bioremediation commercial products including microbial inoculants and en'cyme agents are tested for the oil degradation rate. From the results most products shows the strong oil emulsifying phenomena due to the contained chemical oil dispersant and the low oil degradation rate. Product D inhibited the oil degradability of microorganisms even in the natural sea water. From these results it could be concluded that in the near future the laboratory protocol and standardization of products quality for bioremediarion agents should be prepared to activate the effective application of bioremediation technology in Korea.

  • PDF

Heterologous Expression of a Thermostable α-Galactosidase from Parageobacillus thermoglucosidasius Isolated from the Lignocellulolytic Microbial Consortium TMC7

  • Wang, Yi;Wang, Chen;Chen, Yonglun;Cui, MingYu;Wang, Qiong;Guo, Peng
    • Journal of Microbiology and Biotechnology
    • /
    • v.32 no.6
    • /
    • pp.749-760
    • /
    • 2022
  • α-Galactosidase is a debranching enzyme widely used in the food, feed, paper, and pharmaceuticals industries and plays an important role in hemicellulose degradation. Here, T26, an aerobic bacterial strain with thermostable α-galactosidase activity, was isolated from laboratory-preserved lignocellulolytic microbial consortium TMC7, and identified as Parageobacillus thermoglucosidasius. The α-galactosidase, called T26GAL and derived from the T26 culture supernatant, exhibited a maximum enzyme activity of 0.4976 IU/ml when cultured at 60℃ and 180 rpm for 2 days. Bioinformatics analysis revealed that the α-galactosidase T26GAL belongs to the GH36 family. Subsequently, the pET-26 vector was used for the heterologous expression of the T26 α-galactosidase gene in Escherichia coli BL21 (DE3). The optimum pH for α-galactosidase T26GAL was determined to be 8.0, while the optimum temperature was 60℃. In addition, T26GAL demonstrated a remarkable thermostability with more than 93% enzyme activity, even at a high temperature of 90℃. Furthermore, Ca2+ and Mg2+ promoted the activity of T26GAL while Zn2+ and Cu2+ inhibited it. The substrate specificity studies revealed that T26GAL efficiently degraded raffinose, stachyose, and guar gum, but not locust bean gum. This study thus facilitated the discovery of an effective heat-resistant α-galactosidase with potent industrial application. Meanwhile, as part of our research on lignocellulose degradation by a microbial consortium, the present work provides an important basis for encouraging further investigation into this enzyme complex.

Effect of pH on the Enolization of Sugars and Antioxidant Activity of Caramelization Products Obtained by Caramelization Browning

  • Kim, Ji-Sang;Lee, Young-Soon
    • Food Science and Biotechnology
    • /
    • v.17 no.5
    • /
    • pp.931-939
    • /
    • 2008
  • The objective of this study was to investigate the enolization reaction and the antioxidant activity of caramelization products (CPs) obtained by caramelization browning of glucose and fructose solutions prepared at a pH ranging from 7.0 to 12.0 at varying temperatures ($80-180^{\circ}C$). The degradation of sugars rapidly increased at a high alkaline pH (10.0-12.0), and fructose degraded more rapidly than glucose (p<0.05). As the pH increased, the degree of sugar enolization was higher in fructose than in glucose. Browning and the formation of intermediate degradation products increased with the increase in heating temperatures. The browning development was dependent upon the type of sugar, and it was generally higher at alkaline pH than at neutral pH. The reducing power and 2,2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity of the CPs increased with the increase in browning and formation of large amounts of intermediates. Therefore, the CPs with pronounced antioxidant activity can be prepared by heating fructose or glucose solutions that have a very alkaline pH to high temperatures.