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Abstract  Cultured meat has been gaining popularity as a solution to the increasing 
problem of food insecurity. Although research on cultured meat started later compared to 
other alternative meats, the industry is growing rapidly every year, with developed 
products evaluated as being most similar to conventional meat. Studies on cultured meat 
production techniques, such as culturing new animal cells and developing medium sera 
and scaffolds, are being conducted intensively and diversely. However, active in-depth 
research on the quality characteristics of cultured meat, including studies on the sensory 
and storage properties that directly influence consumer preferences, is still lacking. 
Additionally, studies on the combination or ratio of fat cells to muscle cells and on the 
improvement of microbiota, protein degradation, and fatty acid degradation remain to be 
conducted. By actively investigating these research topics, we aim to verify the quality 
and safety of cultured meats, ultimately improving the consumer preference for cultured 
meat products. 
  
Keywords  cultured meat, manufacturing, nutritional properties, sensory properties, 
storage properties 

Introduction 

With the recent increase in the global population, per capita gross domestic product 

(GDP) and meat consumption are steadily increasing (Hong et al., 2021). The continual 

increase in meat consumption is expected to increase the demand for staple meats, such 

as beef, pork, and chicken, by an average of 70% by 2050 (Siddiqui et al., 2022a). 

Increased meat production is essential to meet such demand. However, traditional and 

conventional livestock farming methods are becoming increasingly inadequate in 

meeting this demand, owing to the requirements of large quantities of finite resources, 

such as land, water, and grains (Xin et al., 2021). As a result, this situation is expected  
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to lead to ongoing issues of food insecurity and environmental problems (Goodwin and Shoulders, 2013). Therefore, some 

people have started to adopt various forms of veganism as a dietary choice. This includes consumers classified as core 

vegans, trend-setting vegans, trend-following vegans, imperfect vegans, green vegans, and potential vegans (Treich, 2021). 

Moreover, plant-based proteins, insect proteins, and cultured meat are some of the products that have been researched and 

developed as alternatives to animal protein (Onwezen et al., 2021). 

Cultured meat, also known as lab-grown meat, is the most recently developed alternative protein source. It is produced by 

in vitro culturing of cells taken from the animal’s body (Siddiqui et al., 2022b). Because cultured meat is produced through 

cell cultivation in bioreactors, it has fewer ethical, religious, and environmental constraints than meats produced by traditional 

livestock farming (Bryant, 2020). Therefore, the commercialization of cultured meat in the protein market is anticipated to 

have a promising outlook and offers advantages for introducing meats that are difficult to produce through traditional farming 

methods, or are not commonly available, such as wild game (Lee et al., 2023). This development broadens the diversity of 

food options for consumers. Furthermore, meat cultivation provides the potential to enhance nutritional content and 

incorporate additives with various biofunctionalities, such as antioxidants and anticancer and anti-inflammatory molecules, 

surpassing the benefits of consuming conventional meat (Nobre, 2022).  

However, globally integrated industrial regulations remain incomplete, and scientific research on this matter is also 

lacking. This suggests that cultured meat may be advantageous in helping to manage consumer health. Despite the fact that 

the cultured meat industry is advancing through various research and product development efforts, further validation of the 

products is required, particularly in terms of tissue texture and food safety (Ramani et al., 2021). 

 

Manufacturing of Cultured Meat 

Donor selection 
Donor selection is the most fundamental aspect of the production process, involving considerations such as the breed, sex, 

and age of the animal and the specific body part from which the cells are sourced (Stephens et al., 2018). As shown in Table 1, 

cultured meat is being produced from cells sourced from various types of animals. Currently, a significant number of 

commercialized products derived from this process have been developed and are available to consumers (Lee et al., 2022a). 

For these products, the cells are primarily sourced (in descending order of usage) from cattle (25%), poultry (22%), seafood 

(19%), pigs (19%), and other animals (15%; Choudhury et al., 2020). Cattle and poultry are predominantly used for research 

purposes and most of those researches are targeted at religious consumers (Bryant, 2020).  

Also, many consumers and scientists commonly know that cultured meat has high advantages for religious reasons and the 

standard of cell selection is influenced by its reasons. However, for example in the Islamic community, the main point of 

choosing meat is “Does the meat (cultured meat) produced follow the halal status?” and this point shows that cultured meat 

isn’t always suitable for religious people (Chriki and Hocquette, 2020). Furthermore, Siddiqui et al. (2022b) reported that 

socially conservative consumers expressed negative reactions towards cultured meat, and some religious communities, such 

as Hindus, expressed vegetarianism is regarded as superior to meat eating. These discussions bring the new research 

development of cell selection and collection techniques from animal bodies and many new studies have to be started.  

Once the livestock breed is selected, the next step involves selecting factors such as sex, age, and specific parts of the 

animal. This decision is dictated by the quality of the satellite cells in the collected muscle tissue (Skrivergaard et al., 2023), 

which is determined by assessing factors such as their yield and differentiation capacity (Arshad et al., 2017). This 
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assessment is conducted to select the most suitable tissue for meat cultivation. Determining the quality of satellite cells is 

crucial because the cells play a pivotal role in the regeneration of the muscle tissue that has been damaged through injury 

(Hong et al., 2021), making them the most critical factor in the cell selection process. Kim et al. (2023c) reported that many 

factors affect cultured meat production and there are existing unfigured mechanisms that need research. Coles et al. (2015) 

reported that the breed of origin, live weight at slaughter, and carcass weight affect the collected cell proliferation and this 

seems that differential gene expression is the main reason for these phenomena.  

For these reasons, the final product of cultured meat is affected by the cell donor animal’s genetic characteristics, some 

researchers are proposing to establish optimized cell models in genetic engineering tools concerning genetically modified 

organisms (GMOs) (Martins et al., 2023). Also, some researchers found out that cultured meat is more suitable for their Swiss 

sample compared to GMOs food and this could be a key point for getting balance in the genetic engineering side of cultured 

meat (Bryant and Barnett, 2020). This describes that many new studies can be excavated in the donor selection part and could 

Table 1. Types of cell donors for manufacturing cultured meat

Cell source Breed Cell kind Product form Reference

Bovine Simmental Primary bovine satellite cells Muscle tissue form Stout et al. (2022) 

Japanese black Bovine myocytes Steak form Furuhashi et al. (2021)

Belgian Blue Mixed cells Muscle tissue form Messmer et al. (2023)

Jeju black Satellite cells Muscle tissue form Kim et al. (2023a) 

Holstein Friesian Peri-renal adipose cells Fat tissue form Okamoto et al. (2022)

Swine LYD (Landrace×Yorkshire×Duroc) Muscle stem cells Muscle tissue form Choi et al. (2020b) 

Nongda Xiang Muscle stem cells Muscle tissue form Zhu et al. (2023) 

Jeju black Muscle stem cells Muscle tissue form Park et al. (2021) 

Pietrain X (Large White×Landrace) Satellite cells Muscle tissue form Perruchot et al. (2012)

Large White Satellite cells Steak form Guan et al. (2023) 

Poultry Hy-line brown (chicken) Satellite cells Muscle tissue form Kim et al. (2023b) 

Broiler Ross (chicken) Primary fibroblast cells Steak form Pasitka et al. (2023) 

Black-bone (chicken) Embryonic stem cells Muscle tissue form Promtan et al. (2023) 

Cherry Valley, White-crested, 
Jianchang (duck) 

Pre-adipocytes cells Fat tissue form Wang et al. (2018) 

Turkey Satellite cells Muscle tissue form Clark et al. (2016) 

Mammalian Sheep Satellite cells Muscle tissue form Carpenter et al. (2000)

Goat Muscle stem cells Muscle tissue form Sui et al. (2018) 

Horse Mesenchymal stem cells Chondrogenic tissue form Fülber et al. (2021) 

Camel Skin fibroblasts cells Skin tissue form Saadeldin et al. (2019)

Deer Mesenchymal stem cells Muscle tissue form Luo et al. (2022) 

Fishery Atlantic salmon Adipose cells Fat tissue form Vegusdal et al. (2003)

Large yellow croaker Piscine satellite cells Muscle tissue form Zhang et al. (2023) 

Bluefin tuna Cells Tissue form Bain et al. (2013) 

Greasyback shrimp Cells Tissue form Zhao et al. (2023) 

Lobster Primary muscle cells Muscle tissue form Jang et al. (2022) 
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be additional scientific data for the traditional meat industry. 

 

Cell isolation 
Cell separation is the process by which the satellite cells are efficiently isolated from the muscle tissue (which comprises 

various cell types, including muscle fibers and stem cells; Li et al., 2022b). This process ensures that only satellite cells are 

obtained from the tissue. Typically, after the initial separation through physical and chemical dissociation, secondary 

separation is performed using methods such as filtration and centrifugation, density gradient centrifugation, and cell 

separation based on the antigen–antibody reactions of surface markers (Swatler et al., 2020). Two commonly used cell 

separation methods are fluorescence-activated cell sorting (FACS) and magnetic-activated cell sorting (MACS) (Table 2).  

FACS utilizes antigen–antibody reactions to recognize surface markers on cells as antigens, which have been pre-labeled 

with fluorescent substances to facilitate the cell sorting process. A flow cytometer is used to separate the cells, allowing for 

the precise analysis of their size and internal structure (Kim et al., 2022b). Furthermore, the integration of FACS with 

sequencing, known as FACSeq, proves to be highly effective. This approach enables the detailed exploration of individual 

cell physiology, facilitating the identification based on factors such as relative nucleic acid contents and cell membrane 

integrity (Dridi et al., 2023). Recently, owing to the meticulous nature of the FACS method, certain researchers have devised 

a FACS strategy specifically for purifying adipose progenitor cell (APC). Subsequently, they demonstrated that the purified 

APC exhibited a notable capacity for proliferation and adipogenic differentiation (Song et al., 2022).  

Similarly, MACS relies on antigen–antibody reactions, but antibodies with magnetic properties are used instead to react 

with antigens on the cell surface. Cells with attached antibodies are then separated using a magnet. This method facilitates 

rapid cell separation and high cell viability (Choi et al., 2020a). Hence, MACS is considered less disruptive in the separation 

process compared to FACS, making it a more suitable choice for large-scale expansion (Kim et al., 2023a). While FACS 

incurs significant costs for both entry and maintenance and exhibits slow speed, hindering high-throughput sample handling, 

bead-based MACS is a solution to these issues. Nonetheless, magnetic-based approaches grapple with challenges such as low 

Table 2. Differences of cell isolation methods 

Characteristics FACS MACS Hybrid

Surface antigens Not essential Essential Not essential 

Fluorescence cell labeling Required Not required Required 

Cell purity High Medium High 

Concurrent categorization of diverse groups Possible Not possible Possible 

Categorizing by varied levels of expression Possible Not possible Possible 

Cell separation Trypsinize Magnetic Complex 

Positive selection Possible Possible Possible 

Negative selection Possible Possible (low purity) Possible 

Multi marker selection Possible Very limited Possible 

Operation specificity High High High 

Equipment price High Low High 

Technical proficiency Highly required Low required Highly required 

FACS, fluorescence-activated cell sorting; MACS, magnetic-activated cell sorting. 
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specificity (stemming from the use of a single antibody type) and difficulties in scaling up samples due to the intricate 

relationship between magnetic field strength and distance (McNaughton et al., 2022).  

Taking advantage of the strengths of both FACS and MACS, a hybrid approach that combines these two techniques for cell 

separation is being widely used in research pertaining to cultured meat production (Guan et al., 2022). In combining two 

techniques, the strengths of FACS, known for its multiple labeling and sorting capabilities, and MACS, appreciated for high 

throughput and quick sorting times. Kang et al. (2021) reported they developed an immunomagnetic microfluidic integrated 

system (IM-MIS) that achieves high yield, high throughput, and minimal loss based on the differentiated cell phenotype.  

With the ongoing advancements in these technologies, there is an anticipation that cell separation technology will stabilize, 

facilitating swift industrial progress in the field of cell sorting. 

 

Cell culturing 
Cell culturing primarily involves the use of proliferation methods to increase the number of selected cells (Fig. 1). Various 

substances, such as basal culture medium, serum, growth factors, and antibiotics, are used to provide the necessary conditions 

 
Fig. 1. The whole process for manufacturing cultured meat. MACS, magnetic-activated cell sorting; FACS, fluorescence-activated cell sorting.
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for cell regeneration and maturation during this process (Siddiqui et al., 2022b). Basic culture media, such as Dulbecco’s 

modified Eagle’s medium (DMEM), contain essential nutrients to support and maintain the growth and health of the cells while 

exponentially increasing their numbers. DMEM offers several advantages, such as commercial availability and a bio-

mimicking environment enriched with ingredients like amino acids and vitamins. Consequently, DMEM addresses challenges 

associated with time-consuming preparation, as well as various issues related to precipitation and storage (Bayrak et al., 2020).  

Any deficiencies in the basic medium are supplemented with additives, such as a specific serum, growth factors, and 

antibiotics (Zhang et al., 2020). Specifically, animal-derived sera, such as fetal bovine serum (FBS), are crucial for cell 

cultures because they are highly effective in promoting cell proliferation (Post et al., 2020). FBS, naturally tailored for the 

prenatal development of unborn calves, boasts an extensive array of nutrients, growth factors, and adhesion factors with 

minimal antibody content (van der Valk, 2022). Its historical preference stems from its relatively low cost and widespread 

availability, making FBS the primary choice for supplementing nearly all eukaryotic cell culture media. However, demand for 

alternatives to sera is growing, owing to the ethical concerns and high costs associated with their use. In recent years, various 

blood-free additives, such as B-27TM and Xerum FreeTM, have been developed to replace FBS (Xin et al., 2021). These 

products aim to minimize animal sacrifice and reduce the cost of cultured meat production. Furthermore, to alleviate concerns 

regarding the consumption of antibiotics and anti-inflammatory agents in the final cultured meat products, some producers 

have opted for methods that do not use these unwanted bioactive molecules. However, this approach requires delicate culture 

control, as it can lead to a sharp decrease in cell viability (Piochi et al., 2022).  

Microcarriers, an optional material for cell culturing, are formed into beads and have been established as an expanded 

growth surface to support the differentiation and proliferation of various types of cultured cells (Norris et al., 2022). And 

there are edible, non-edible, and degradable microcarriers exist, among those kinds, edible microcarrier is most preferred and 

it is classified into polysaccharides, lipids, polypeptides, and composites/synthetics (Bodiou et al., 2020). The importance of 

edible microcarriers is to reduce the final cost of cultured meat products by increasing cell harvest yield (Zernov et al., 2022).  

The most critical environmental factor in cell culturing is temperature, as it is essential for cell culturing. Mass cell 

culturing is predominantly carried out in bioreactors, where optimal cell culture is conducted at a temperature of 37℃, 

mimicking the human body, and supplied with oxygen (Garrison et al., 2022). Guan et al. (2022) reported that mildly elevated 

temperatures (39℃) and mechanical stimulation are among the environmental cues that have been proven to boost both 

myogenic differentiation and hypertrophy. Some environmental cues like mild high temperature (39℃) and mechanical 

movement have also been demonstrated to enhance myogenic differentiation and hypertrophy (Guan et al., 2022). 

Consequently, while inducing heat stress through elevated culture temperatures may not independently suffice for cell growth 

and differentiation, it can effectively promote growth factor-mediated cell proliferation and differentiation (Oh et al., 2023). 

Taking these aspects into consideration, both in cell culture and collection, it becomes imperative to align with the ethical 

consumption tendencies of consumers. Simultaneously, there is a continuous need to explore avenues that provide industrial 

economic advantages. 

 

Cell structuring 
In cell structuring, the main point is to stabilize the differentiation of muscle cells. It is also called subsequent hypertrophy 

and this is the mix of biochemical and mechanical stimuli (Post, 2012). A scaffold structure is necessary for organizing the 

cultured cells into tissues. To reproduce all important features of conventional meat, the set of requirements for biomaterials 

used to produce cultured meat is highly specific (Wollschlaeger et al., 2022). The material should be edible, sustainable, 
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widely available, animal-free, non-toxic, cheap, processable, and ideally have none or only a mild taste.  

Animal-derived scaffolds, which are primarily composed of collagen, have the advantage of providing minimal 

heterogeneity during cell cultivation. Furthermore, they contribute to the texture and flavor of the final product, aiding in 

replicating the characteristics of conventional meat (Seah et al., 2022). Collagen gels or collagen–Matrigel complexes are 

commonly used because they enhance protein production (Post, 2012). Collagen stands out as a well-established material for 

cell adherent coatings in tissue engineering. Considering that HC peptides share the identical amino acid sequence with 

collagen and retain cell-binding capability even after collagen denaturation into gelatin, it is reasonable to anticipate robust 

cell adhesion on hydrolyzed collagen surfaces (Koranne et al., 2022).  

Plant-based scaffolds, which are existing plant structures onto which the cultured cells can be attached, offer the simplest 

means to achieving cellular myogenesis. Additionally, they allow for the consumption of nutrients naturally present in plants, 

providing an added advantage (Levi et al., 2022). Decellularized spinach is a representative plant-based scaffold that shows 

high cell adhesion and survival rate and forms suitable cost on the industrial side (Jones et al., 2021). To reproduce the 

structure of muscle tissues in decellularized spinach scaffolds, the critical factors include the precise composition of the 

tissue, the arrangement of cells within the scaffold, and the influence of surface topography and cell origin, which may vary 

based on plant species and leaf position (Rao et al., 2023). However, plant-based scaffolds, which may include polysaccharides 

such as cellulose, alginate, and hyaluronic acid, carry the risk of inducing allergies (Djisalov et al., 2021), rendering them less 

suitable for consumption by vulnerable consumers.  

Recently, interest in the use of 3D printing technology has been growing, and research studies on the use of 3D printers to 

produce scaffolds and to directly create cultured meat in the shape of conventional meat are underway (Ramani et al., 2021). 

In 3D bioprinter, the nozzle size, extrusion pressure, and source of filler highly affect the final products of cultured meat 

(Djisalov et al., 2021). The main strength of 3D printing technology is the creation of free forms, allowing researchers to 

realize the desired shape with a high realization rate and freely adjust the type and proportion of the structure (Li et al., 2021). 

Also enhancing tissue distribution of macromolecules and cells, this technique contributes to producing final products with 

improved organoleptic properties, offering precise deposition of cells, micronutrients, technological aids, and biomaterials in 

predefined locations and shapes, presenting advantages over alternative biofabrication methods (Barbosa et al., 2023).  

While these aspects greatly aid in the differentiation of cells cultured on the scaffold into muscle, it seems essential to 

establish cell classification and safety verification methods that align with the scaffold’s characteristics. 

 

Quality Properties of Cultured Meat 

Nutritional properties 
Various technological development studies have been conducted aiming to achieve comparable nutritional components, 

such as protein, essential amino acids, vitamins, and mineral content, in cultured meat compared to conventional meat, from a 

nutritional perspective (Fraeye et al., 2020). The nutritional quality of cultured meat is influenced by the basic culture 

medium, serum, growth factors, and other nutrients used in the cell culture. Various studies are underway to investigate the 

nutritional composition and content of the products (Chriki and Hocquette, 2020). As of now, the protein content (the main 

reason why people eat meats) of cultured meat has not been quantified; however, morphological observations suggest 

similarities to traditional meat in terms of cytoskeletal proteins, with current research focusing on optimizing the nutrient 

content of the growth medium to promote the development of cells with higher protein content (Broucke et al., 2023). So 



Food Science of Animal Resources  Vol. 44, No. 3, 2024 

506 

huge differences appear in other nutrient contents except protein contents between traditional meat and cultured meat.  

The type and content of fat in cultured cells can be adjusted according to the manufacturer’s preference or purpose, and, 

like muscle cells, they must undergo a separate differentiation process during cultivation (Fish et al., 2020). Fraeye et al. 

(2020) reported that the nature of the production process rendered regulation of the fat composition of cultured meats 

possible, thus allowing for the development of healthier products through adjustments of the essential fatty acid, 

polyunsaturated fatty acid, and trans-unsaturated fatty acid ratios and calorie content. Accumulating as storage compounds in 

animal muscles, conventional meat is a nutritionally dense food rich in high-quality proteins, as well as a diverse array of 

vitamins and minerals (Singh et al., 2022). Meat blood is abundant in various nutrients, particularly minerals like calcium, 

iron, magnesium, potassium, and sodium (Lee et al., 2022b). Therefore, consuming meat not only provides essential nutrients 

directly but also includes minerals that are present in the blood.  

However, in cultured meat, nutrient contents such as vitamins, minerals, etc. are affected by serum. The composition and 

quantity of serum used can vary depending on the donor’s biological information, diet, and lifestyle (Lee et al., 2022b). 

Therefore, even the same type of serum can have differences in components and amount. Kadim et al. (2015) reported that in 

cultured meat, the essential amino acids, minerals, vitamins, and bioactive compounds provided by the basic culture medium, 

serum, and other nutrients used during cell culture were similar to or even exceeded those in conventional meat, 

demonstrating the nutritional advantages of meat cultivation. Currently, Ultroser G serves as a commercially available serum-

free growth medium, acting as a substitute for fetal bovine serum. It encompasses all the essential nutrients required for 

eukaryotic cell growth, including growth factors, binding proteins, adhesion factors, vitamins, hormones, and mineral trace 

elements (Jairath et al., 2021).  

Therefore, cultured meat maintains its nutritional quality and can even contain enhanced contents of nutrients such as 

essential amino acids and fatty acids that may be lacking in conventional meat. The meat culturing process, thus, allows for 

the production of products with high nutritional value. 

 

Textural properties 
The latest research on textural properties has exposed suboptimal structuring and texture attributes in manufactured 

cultured meat (Starowicz et al., 2022). Notably, non-instrumental studies profiling texture has centered on sensory 

characteristics, including hardness, springiness, and chewiness (Yuliarti et al., 2021). Li et al. (2022a) reported that meat 

cultured on edible 3D chitosan–sodium alginate–collagen/gelatin scaffolds had similar textural characteristics (e.g., 

chewiness, springiness, and resilience) as those of conventional meat of the same weight, a finding they attributed to the 

comparable fibrous characteristics of both products. Furthermore, in a study on cultured meat production using pig muscle 

stem cells, Zhu et al. (2022) found that the addition of L-ascorbic acid 2-phosphate during the cell culture phase led to 

increased expression of the myosin heavy chain protein and differentiation genes, which resulted in enhancement of the tissue 

texture. Moreover, in their research on cultured meat using smooth muscle cells, Zheng et al. (2021) observed that the texture 

of the final product was significantly influenced by the collagen content. They found that the co-culturing of smooth muscle 

cells with hydrogel and formation of a network structure enhanced the texture of cultured meat. This indicates that, aside 

from the characteristics of the cultured cells themselves, the type of scaffold and additives used can also affect the texture of 

the final product. Tomiyama et al. (2020) found that among various scaffold structures, those mimicking the striped texture 

resembling muscle architecture promote myotube formation.  

Also, some scaffolds can undergo breakdown and reconstruction by cells, in general, maintaining the structure and 
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mechanical properties of the scaffold has a significant impact on the texture of cultured meat (Langelaan et al., 2010). In light 

of this, there is a trend in developing scaffolds using edible materials such as alginate, gelatin, collagen, and starch, taking 

advantage of the characteristics of the scaffold. Among various scaffolds, animal-derived ones are suggested to more closely 

mimic the traditional texture of meat compared to plant-based scaffolds (Levi et al., 2022). Paredes et al. (2022) compared the 

textural properties of commercially available conventional sausages and sausages made from cultured meat and found that the 

hardness, cohesiveness, springiness, chewiness, and gumminess of the two products were similar. This finding suggests that 

cultured meat products are similar to conventional meat products in terms of textural quality, highlighting the potential for 

future expansion into the development of cultured meat-based products. However, in the case of cultured meat with a meat-

like structure rather than a processed meat form, currently available products for commercial sale have generally received 

lower consumer evaluations compared to traditional meat (Kim et al., 2022a).  

It is particularly suggested that ongoing efforts are needed for further improvement in texture, especially in terms of 

consistency. 

 

Sensory properties 
Intrinsic qualities such as taste, texture, smell, and nutritional value constitute the importance of meat. These essential 

attributes play a critical role in influencing consumers’ choices when it comes to purchasing and consuming meat (Rombach 

et al., 2022). Furthermore, sensory properties are more treated as main factors than price, health function, and convenience, 

and if the sensory properties are not well possessed, consumer rejection rapidly increases (Pakseresht et al., 2022). The lipid 

oxidation products of conventional meat interact with the products of the Maillard reaction, creating a complex flavor profile 

that contributes to the meat color and taste (Chen et al., 2022). Therefore, for the flavor of conventional meat to be replicated 

in cultured meat, an understanding of how well the product can mimic the taste of fats is needed (Ng and Kurisawa, 2021).  

Further research on the mechanisms of flavor compounds is necessary. Broucke et al. (2023) reported various studies that 

are using different methods to enhance the flavor of cultured meat, including co-culturing adipocyte precursors with muscle 

cells and adding carotenoids during the cell culture phase, with a focus on flavor precursors. Additionally, Louis et al. (2023) 

investigated the regulation of the fatty acid composition in adipose-derived stem cells from Wagyu cattle and found that the 

initial lipid composition can be controlled by adjusting the fatty acids during the cell differentiation process when producing 

fat cells. This resulted in a fat composition similar to that of conventional meat. These studies indicate that a foundation for 

replicating the flavor of fats in cultured meat has been established and underscore the need for continued in-depth research 

specifically focusing on fat cells. Joo et al. (2022) conducted a comparative study of cultured and conventional meats using 

electronic nose analysis. The researchers observed that traditionally produced meat was superior in terms of flavors such as 

umami. Also, Rolland et al. (2020) reported that a contrast in taste was evident between the conventional and ‘cultured’ 

hamburgers during the sensory evaluation of six attributes, with the ‘cultured’ hamburger receiving a slightly favorable 

assessment.  

This superiority was attributed to differences in the maturity of muscle fibers, implying that the flavor of the final cultured 

meat can be influenced, even during the initial cell selection phase of primed cultivation. All the above findings underscore 

the need for further research on the combinations and ratios of different types of muscle and fat cells. Verbeke et al. (2015) 

reported that significant challenges lie in advancing both the product and its production process to closely emulate traditional 

meat, especially concerning sensory characteristics and pricing.  

Additionally, challenges involve scaling up the process for enhanced resource efficiency and cost-effectiveness, along with 
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addressing regulatory and intellectual property issues.  
 

Storage properties 
Cultured meat is produced in a sterilized environment free of contaminants, making it generally safer than conventionally 

produced meat, in terms of microbial contamination. However, proper handling, processing, packaging, and storage practices 

after production need to be maintained (Siddiqui et al., 2022a). Upon introducing cultured meat to the market in the EU, 

regulations from the Genetically Modified Food and Feed Law have been applied, encompassing areas such as labeling, 

official control of animal-derived products, and microbiological criteria (Ketelings et al., 2021). Similar to other food 

production processes, ensuring safety throughout the entire cultured meat production process in the EU requires the 

implementation of food safety monitoring systems like hazard analysis and critical control points. 

Maintaining the storage stability of cultured meat serves not only the purpose of protecting consumers’ health from 

microorganisms but also aims to prevent changes in the texture characteristics of the final product, which could impact the 

tissue structure (Rubio et al., 2020). Ong et al. (2023) reported that the microbial composition of the final product is 

influenced by the indigenous microbial population in the production environment. Therefore, the post-production microbial 

composition of cultured meat is anticipated to be similar to that of the indigenous microbial population in the production 

environment. Additionally, in their study on cultured meat with added carotenoids, Stout et al. (2020) found no significant 

difference in malondialdehyde values between days 0 and 1 before heating of the regular cultured meat samples; however, 

after heating, approximately two-fold difference was observed in malondialdehyde values between days 0 and 1. This 

indicates that the storage conditions, form, and method greatly influence the cultured meat after its production.  

In particular, an analysis of the factors that lead to significant changes in meat stability after heating is needed, and the 

implementation of appropriate storage methods is required. Furthermore, Singh et al. (2022) reported that utilizing the 

fermentation characteristics of organisms such as mushrooms, yeast, and fungi enhances the taste profile of cultured meat and 

extends its shelf life. This suggests that the use of natural antimicrobials will increase in the future. Considering that cultured 

meat is primarily generated in a laboratory environment, it can be regarded as less prone to zoonotic diseases than 

conventional meat products. However, there are knowledge gaps in the current understanding of food safety concerning 

cultured meat, particularly because the majority of research endeavors are concentrated on optimizing production methods 

(Hadi and Brightwell, 2021).  

Therefore, future research studies should focus on utilizing various additives to enhance the shelf life of cultured meat 

while simultaneously improving other characteristics, such as flavor, texture, and nutrition. 

 

Summary and Future Research 

With the diversification of consumer preferences and increasing demand for meat, cultured meat is gaining prominence as 

a future food resource. Various studies have been conducted on cultured meat production, especially in the development of 

serum alternatives and scaffolding materials. With regard to serum research, the development of artificial or blood-free serum 

cultivation methods has the potential to reduce the final cost of cultured meat production. Regarding scaffolding materials, 

the utilization of 3D printing techniques holds promise for enhancing both the speed and quality of cultured meat production. 

Although there have been extensive studies on the nutritional quality and histological aspects of cultured meats, research on 

their sensory and storage characteristics remains relatively limited. Considering that these characteristics directly affect 

consumer preferences, continuous research and development in these areas are warranted. With regard to sensory 
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characteristics, research on the combination and ratio of muscle and fat cells is required to achieve a flavor similar to that of 

traditional meat. Furthermore, studies on the storage conditions, forms, and packaging methods are required to maintain the 

freshness and safety of cultured meats and their products. Specifically, studies on hygiene-related aspects for instance, 

microbial composition, lipid oxidation, and protein degradation are crucial to demonstrate the practicality of cultured meats. 

Such research endeavors are expected to contribute greatly to improving consumer preferences for these products in the 

future. Furthermore, it appears that ongoing research with sample weights similar to actual meat is imperative to enhance 

industrial relevance and value. In the future of cultured meat, research at the product level, focusing on weights comparable 

to finished products, should persist to ensure continuous elevation of industrial value and advancement. This task will likely 

become a focal point for researchers in the field. 
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