• 제목/요약/키워드: the degradation products

검색결과 765건 처리시간 0.038초

Palladium 촉매와 포름산을 활용한 액상 trinitrotoluene 분해 특성 연구 (A Study on the Degradation Properties of Aqueous Trinitrotoluene by Palladium Catalyst and Formic Acid)

  • 정상조;최형진;박상진;이준일
    • 한국물환경학회지
    • /
    • 제31권5호
    • /
    • pp.468-475
    • /
    • 2015
  • Various methods to degrade explosives efficiently in natural soil and water that include trinitrotoluene (TNT) have been studied. In this study, TNT in water was degraded by reduction with palladium (Pd) catalyst impregnated onto alumina (henceforth Pd-Al catalyst) and formic acid. The degradation of TNT was faster when the temperature of water was high, and the initial TNT concentration, pH, and ion concentration in water were low. The amounts of Pd-Al catalyst and formic acid were also important for TNT degradation in water. According to the experimental results, the degradation constant of TNT with unit mass of Pd-Al catalyst was $8.37min^{-1}g^{-1}$. The degradation constant of TNT was higher than the results of previous studies which used zero valent iron. 2,6-diamino-4-nitrotoluene and 2-amino-4,6-dinitrotoluene were detected as by-products of TNT degradation showing that TNT was reduced. The by-products of TNT were also completely degraded after reaction when both Pd-Al catalyst and formic acid existed. Even though there are several challenges of Pd-Al catalyst (e.g., deactivation, poisoning, leaching, etc.), the results of this study show that TNT degradation by Pd-Al catalyst and formic acid is a promising technique to remediate explosive contaminated water and soil.

열화특성치가 와이블분포를 따르는 경우 두 가지 스트레스 변수를 고려한 가속열화시험의 최적 설계 (Optimal Design of Accelerated Degradation Tests with Two Stress Variables in the Case that the Degradation Characteristic Follows Weibull Distribution)

  • 임헌상;김용수
    • 한국신뢰성학회지:신뢰성응용연구
    • /
    • 제13권2호
    • /
    • pp.87-98
    • /
    • 2013
  • Accelerated degradation tests (ADTs) measuring failure-related degradation characteristic at the accelerated condition are widely used to assess the reliability of highly reliable products. Often, however, little degradation could be observed even in single-stress ADTs due to the high reliability of test unit, and as a result poor estimate of the reliability may be obtained. ADTs with multiple stress variables can be employed to overcome such difficulties. In this paper, optimal ADT plans with two stress variables are developed assuming that the degradation characteristic follows Weibull distribution by determining the stress levels, the proportion of test units allocated to each stress level such that the asymptotic variance of the maximum likelihood estimator of the q-th quantile of the lifetime distribution at the use condition is minimized.

Comparison of TiO2 and ZnO catalysts for heterogenous photocatalytic removal of vancomycin B

  • Lofrano, Giusy;Ozkal, Can Burak;Carotenuto, Maurizio;Meric, Sureyya
    • Advances in environmental research
    • /
    • 제7권3호
    • /
    • pp.213-223
    • /
    • 2018
  • Continuous input into the aquatic ecosystem and persistent structures have created concern of antibiotics, primarily due to the potential for the development of antimicrobial resistance. Degradation kinetics and mineralization of vancomycin B (VAN-B) by photocatalysis using $TiO_2$ and ZnO nanoparticles was monitored at natural pH conditions. Photocatalysis (PC) efficiency was followed by means of UV absorbance, total organic carbon (TOC), and HPLC results to better monitor degradation of VAN-B itself. Experiments were run for two initial VAN-B concentrations ($20-50mgL^{-1}$) and using two catalysts $TiO_2$ and ZnO at different concentrations (0.1 and $0.5gL^{-1}$) in a multi-lamp batch reactor system (200 mL water volume). Furthermore, a set of toxicity tests with Daphnia magna was performed to evaluate the potential toxicity of oxidation by-products of VAN-B. Formation of intermediates such as chlorides and nitrates were monitored. A rapid VAN-B degradation was observed in ZnO-PC system (85% to 70% at 10 min), while total mineralization was observed to be relatively slower than $TiO_2-PC$ system (59% to 73% at 90 min). Treatment efficiency and mechanism of degradation directly affected the rate of transformation and by-products formation that gave rise to toxicity in the treated samples.

Zerovalent Iron 및 Manganese Oxide에 의한 살균제 Chlorothalonil의 탈염소화 (Dechlorination of the Fungicide Chlorothalonil by Zerovalent Iron and Manganese Oxides)

  • 윤종국;김태화;김장억
    • 농약과학회지
    • /
    • 제12권1호
    • /
    • pp.43-49
    • /
    • 2008
  • Arylnitrile계 살균제인 chlorothalonil의 탈염소화를 촉진시키기 위하여 금속촉매인 zerovalent iron(ZVI) 및 manganese oxide(pyrolusite 및 birnessite)를 수중 처리하여 pH에 따른 chlorothalonil의 분해정도, 탈염소화 그리고 분해산물의 구조를 조사하였다. ZVI, pyrolusite 및 birnessite를 처리하였을 경우 PH가 낮을수록 chlorothalonil의 분해효율은 높게 나타났다. pH 5.0에서 ZVI, pyrolusite 및 birnessite를 각각 1.0%(v/w) 처리하였을 때 chlorothalonil의 분해반감기는 ZVI 4.7시간, pyrolusite 13.46시간 및 birnessite 21.38시간으로 나타났다. Chlorothalonil의 탈염소화 정도를 나타내는 D/N value의 평균값은 ZVI, pyrolusite 및 birnessite를 처리하였을 경우 각각 2.85, 1.12 및 1.09 이었다. Chlorothalonil의 분해산물은 GC-MS를 이용하여 분석한 결과 pyrolusite와 birnessite에 의해 chloride ion이 하나 이탈된 trichloro-1,3-dicyanobenzene과 둘 이탈된 dichloro-1,3-dicyanobenzene으로 확인되었으며, ZVI에 의한 분해산물은 pyrolusite, birnessite의 분해산물과 동일한 trichloro-1,3-dicyanobenzene, dichloro-1,3-dicyanobenzene을 비롯하여 환원이 더 진행된 chloro-1,3-dicyanobenzene과 chlorocyanobenzene으로 확인되었다.

연속 광조사 조건에서의 태양전지모듈의 연간 최대출력 저하율 변화 예측 분석 (Analysis of Maximum Generating Power Drop of PV Module Under the Continuous Artificial Light Irradiation Test Condition)

  • 김경수;윤재호
    • Current Photovoltaic Research
    • /
    • 제6권3호
    • /
    • pp.69-73
    • /
    • 2018
  • PV system is consisted with PV module, inverter and BOS(balance of system). To have robustic operation more than 20 years, the expected and guaranteed durability and reliability of products should be met. Almost components of PV system are qualified through IEC standards at test laboratory. But the qualification certificate of product does not ensure long-term nondefective operation. PV module's expected life time is nowadays more than 20 years and annual maximum power degradation ratio would be less than -1%. But the power degradation ratio is basically based on real data more than several years' record. Developing test method for ensuring annual maximum power degradation ratio is very need because there are many new products every month with new materials. In this paper, we have suggested new test method under continuous artificial light irradiation test condition for analyze expected maximum power drop ratio.

Natural Products as Sources of Novel Drug Candidates for the Pharmacological Management of Osteoarthritis: A Narrative Review

  • Kang, Young-Hoon;Lee, Hyun Jae;Lee, Choong Jae;Park, Jin-Sung
    • Biomolecules & Therapeutics
    • /
    • 제27권6호
    • /
    • pp.503-513
    • /
    • 2019
  • Osteoarthritis is a chronic degenerative articular disorder. Formation of bone spurs, synovial inflammation, loss of cartilage, and underlying bone restructuring have been reported to be the main pathologic characteristics of osteoarthritis symptoms. The onset and progression of osteoarthritis are attributed to various inflammatory cytokines in joint tissues and fluids that are produced by chondrocytes and/or interact with chondrocytes, as well as to low-grade inflammation in intra-articular tissues. Disruption of the equilibrium between the synthesis and degradation of the cartilage of the joint is the major cause of osteoarthritis. Hence, developing a promising pharmacological tool to restore the equilibrium between the synthesis and degradation of osteoarthritic joint cartilage can be a useful strategy for effectively managing osteoarthritis. In this review, we provide an overview of the research results pertaining to the search for a novel candidate agent for osteoarthritis management via restoration of the equilibrium between cartilage synthesis and degradation. We especially focused on investigations of medicinal plants and natural products derived from them to shed light on the potential pharmacotherapy of osteoarthritis.

Characterization of a Thermophilic Lignocellulose-Degrading Microbial Consortium with High Extracellular Xylanase Activity

  • Zhang, Dongdong;Wang, Yi;Zhang, Chunfang;Zheng, Dan;Guo, Peng;Cui, Zongjun
    • Journal of Microbiology and Biotechnology
    • /
    • 제28권2호
    • /
    • pp.305-313
    • /
    • 2018
  • A microbial consortium, TMC7, was enriched for the degradation of natural lignocellulosic materials under high temperature. TMC7 degraded 79.7% of rice straw during 15 days of incubation at $65^{\circ}C$. Extracellular xylanase was effectively secreted and hemicellulose was mainly degraded in the early stage (first 3 days), whereas primary decomposition of cellulose was observed as of day 3. The optimal temperature and initial pH for extracellular xylanase activity and lignocellulose degradation were $65^{\circ}C$ and between 7.0 and 9.0, respectively. Extracellular xylanase activity was maintained above 80% and 85% over a wide range of temperature ($50-75^{\circ}C$) and pH values (6.0-11.0), respectively. Clostridium likely had the largest contribution to lignocellulose conversion in TMC7 initially, and Geobacillus, Aeribacillus, and Thermoanaerobacterium might have also been involved in the later phase. These results demonstrate the potential practical application of TMC7 for lignocellulosic biomass utilization in the biotechnological industry under hot and alkaline conditions.

A Comparison of the Experiment Results and the Radical Degradation Pathways in PCE through Atomic Charge Calculation

  • Lee, Byung-Dae
    • 한국응용과학기술학회지
    • /
    • 제33권3호
    • /
    • pp.492-497
    • /
    • 2016
  • The intermediate product resulting from the radical degradation experiment of PCE and the atomic charge gained through Gaussian03W were compared against each other. The result was that the ratio of PCE radical degradation was almost 98% or higher after the 9 hr point in reaction time. The reaction speed constant was $0.16hr^{-1}$ and it followed the first reaction. We could see that at each location of the PCE molecule, dechlorination happened at a point where the negative atomic charge was the greatest. Moreover, the intermediate product of PCE radical degradation that was confirmed in the experiment and literature coincided exactly with the intermediate product in the atomic charge calculation. Therefore, when the atomic charge is calculated, the radical degradation pathway of the organic chlorine compound could be forecast.

모델식품계에서 무산소 가열시 토코페롤의 열분해 패턴 (Thermal Degradation Pattern of Tocopherols on Heating without Oxygen in a Model Food System)

  • 정혜영
    • 한국식품영양학회지
    • /
    • 제11권6호
    • /
    • pp.635-639
    • /
    • 1998
  • The thermal degradation pattern of $\alpha$-, ${\gamma}$-and $\delta$-tocopherols in glycerol was investigated during heating at 100~25$0^{\circ}C$ for 5-60 min in the absence of oxyge. The tocopherols and thermally decomposed products were separated by HPLC with a reversed phase $\mu$-Bondapak C18-column. The degradation pattern of $\alpha$-tocopherol during the heating in the absence of oxygen was different from those of ${\gamma}$-and $\delta$-tocopherols. But the degradation patterns of ${\gamma}$-and $\delta$-tocopherols were similar to each other. The residual content of $\alpha$-tocopherol during the heating in the absence of oxygen decreased to the range 12~65% and those of ${\gamma}$-and $\delta$-tocopherols decreased to the range 4~96%. The thermal degradation of tocopherols in the absence of oxygen was less than that in the presence of oxygen.

  • PDF

Kinetics of In-situ Degradation of Nerve Agent Simulants and Sarin on Carbon with and without Impregnants

  • Saxena, Amit;Sharma, Abha;Singh, Beer;Suryanarayana, Malladi Venkata Satya;Mahato, Timir Haran;Sharma, Mamta;Semwal, Rajendra Prasad;Gupta, Arvind Kumar;Sekhar, Krishnamurthy
    • Carbon letters
    • /
    • 제6권3호
    • /
    • pp.158-165
    • /
    • 2005
  • Room temperature kinetics of degradation of nerve agent simulants and sarin, an actual nerve agent at the surface of different carbon based adsorbent materials such as active carbon grade 80 CTC, modified whetlerite containing 2.0 and 4.0 % NaOH, active carbon with 4.0 % NaOH, active carbon with 10.0 % Cu (II) ethylenediamine and active carbon with 10.0 % Cu (II) 1,1,1,5,5,5-hexafluoroacetylacetonate were studied. The used adsorbent materials were characterized for surface area and micropore volume by $N_2$ BET. For degradation studies solution of simulants of nerve agent such as dimethyl methylphosphonate (DMMP), diethyl chlorophosphate (DEClP), diethyl cyanophosphate (DECnP) and nerve agent, i.e., sarin in chloroform were prepared and used for the uniform adsorption on the adsorbent systems using their incipient volume at room temperature. Degradation kinetics was monitored by GC/FID and was found to be following pseudo first order reaction. Kinetics parameters such as rate constant and half life were calculated. Half life of degradation with modified whetlerite (MWh/NaOH) system having 4.0 % NaOH was found to be 1.5, 7.9, 1206 and 20 minutes for DECnP, DEClP, DMMP and sarin respectively. MWh/NaOH system showed maximum degradation of simulants of nerve agents and sarin to their hydrolysis products. The reaction products were characterized using NMR technique. MWh/NaOH adsorbent was also found to be active against sulphur mustard.

  • PDF