• Title/Summary/Keyword: the J-integral

Search Result 781, Processing Time 0.023 seconds

J-integral and fatigue life computations in the incremental plasticity analysis of large scale yielding by p-version of F.E.M.

  • Woo, Kwang S.;Hong, Chong H.;Basu, Prodyot K.
    • Structural Engineering and Mechanics
    • /
    • v.17 no.1
    • /
    • pp.51-68
    • /
    • 2004
  • Since the linear elastic fracture analysis has been proved to be insufficient in predicting the failure of strain hardening materials, a number of fracture concepts have been studied which remain applicable in the presence of plasticity near a crack tip. This work thereby presents a new finite element model to predict the elastic-plastic crack-tip field and fatigue life of center-cracked panels(CCP) with ductile fracture under large-scale yielding conditions. Also, this study has been carried out to investigate the path-dependence of J-integral within the plastic zone for elastic-perfectly plastic, bilinear elastic-plastic, and nonlinear elastic-plastic materials. Based on the incremental theory of plasticity, the p-version finite element is employed to account for the accurate values of J-integral, the most dominant fracture parameter, and the shape of plastic zone near a crack tip by using the J-integral method. To predict the fatigue life, the conventional Paris law has been modified by substituting the range of J-value denoted by ${\Delta}J$ for ${\Delta}K$. The experimental fatigue test is conducted with five CCP specimens to validate the accuracy of the proposed model. It is noted that the relationship between the crack length a and ${\Delta}K$ in LEFM analysis shows a strong linearity, on the other hand, the nonlinear relationship between a and ${\Delta}J$ is detected in EPFM analysis. Therefore, this trend will be depended especially in the case of large scale yielding. The numerical results by the proposed model are compared with the theoretical solutions in literatures, experimental results, and the numerical solutions by the conventional h-version of the finite element method.

Overload Analysis and Fatigue Life Prediction Using an Effective J-Integral of Spot Welded Specimens (점용접시편의 과부하해석 및 유효 J-적분에 의한 피로수명예측)

  • Lee, Hyeong-Il;Choe, Jin-Yong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.3 s.174
    • /
    • pp.567-580
    • /
    • 2000
  • This paper proposes an integrated approach, which is independent of specimen geometry and loading type, for predicting the fatigue life of spot welded specimens. We first establish finite element models reflecting the actual specimen behaviors observed on the experimental load-deflection curves of 4 types of single spot welded specimens. Using finite element models elaborately established, we then evaluate fracture parameter J-integral to describe the effects of specimen geometry and loading type on the fatigue life in a comprehensive manner. It is confirmed, however, that J-integral concept alone is insufficient to clearly explain the generalized relationship between load and fatigue life of spot welded specimens. On this ground, we introduce another effective parameter $J_e$ composed of $J_I$, $J_{II}$, $J_{III}$, which has been demonstrated here to more sharply define the relationship between load and fatigue life of 4 types of spot welded specimens. The crack surface displacement method is adopted for decomposition of J, and the mechanism of the mixed mode fracture is also discussed in detail as a motivation of using $J_e$.

New Engineering J and COD Estimation Method for Circumferential Through-Wall Cracked Pipes-Combined Tension and Bending Load (원주방향 관통균열이 존재하는 배관의 새로운 J-적분 및 COD 계산식-인장하중과 굽힘모멘트가 동시에 작용하는 경우)

  • Huh, Nam-Su;Kim, Yun-Jae;Kim, Young-Jin
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.7
    • /
    • pp.85-90
    • /
    • 2001
  • In order to apply the Leak-Before-Break(LBB)concept to nuclear piping, accurate estimation of J-integral and crack opening displacement(COD) is essential for complex loading, such as combined tension and bending. This paper proposes a new engineering method to estimate J-integral and the COD for circumferential through-wall cracked pipes subject to combined tension and bending loading. The proposed method to estimate the COD is validated against three published pipe test data, generated from a monotonically increasing bending load with a constant internal pressure, which shows excellent agreements.

  • PDF

Relation between J and CMOD in dynamic loaded 3-point bend specimens (동적 하중을 받는 3점 굽힘 시험편들에서의 J와 CMOD와의 관계)

  • Lee, Ouk-S.;Cha, Il-Nam;Cho, Jae-Ung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.11 no.2
    • /
    • pp.134-140
    • /
    • 1994
  • Numerical caiculations are made in order to find a possible relation between the J-integral and the crack mouth opening displacement(CMOD) in dynamic nonlinear fracture experiments. Both elastic-plastic and elastic-viscoplastic materials are considered at different impact velocities. The J-integral may be estimated from the crack mouth opening displacement which can be measured directiy from photographs taken during dynamic experiments.

  • PDF

Analysis of Fatigue Crack Growth in a Viscoelastic Material using ${\Delta}J$-integral (${\Delta}J$-적분을 이용한 점탄성 재료의 피로균열 성장분석)

  • Yu, Seong-Mun;Zi, Goang-Seup;Thanh, Chau Dinh;Lee, Hyun-Jong;Mun, Sung-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.5
    • /
    • pp.483-491
    • /
    • 2010
  • In this paper, ${\Delta}J$-integral is used to analyze fatigue crack growth of viscoelastic material. Using analytical integral value, the J-integral is calculated. So, reduction of calculation time and increase of accuracy are made possible. The stress intensity factor is calculated using the finite element method code. In difference with existed fatigue crack analysis using ${\Delta}K$, we were successfully able to analyze various load amplitude and the fatigue crack of load cycle only with two fatigue crack growth parameters and creep compliance. The analysis gives N-${\alpha}$ curve for simulation of crack growth, and the curve almost corresponds with test results.

p-Version Finite Element Analysis of Elasto-Plastic Cracked Plates Including Strain Hardening Effects (변형률 경화효과를 고려한 탄소성 균열판의 p-Version 유한요소해석)

  • 우광성;홍종현;윤영필
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.12 no.4
    • /
    • pp.537-549
    • /
    • 1999
  • 선형탄성 파괴해석은 균열을 갖는 변형률 경화재료의 파괴거동을 예측하는데 불충분하기 때문에 최근에는 균열 선단 부에서 대규모 소성 역을 갖는 균열 체에 적용할 수 있는 많은 파괴역학개념이 제안되고 있다. 따라서, 본 연구에서는 대규모항복 조건하의 연성파괴를 보이는 평판을 정확하게 해석할 수 있는 새로운 유한요소모델을 제시하고자 한다. 균열 선단 부의 응력 장을 정의하는데 가장 지배적인 파괴매개변수인 J-적분 값과 소성 역의 크기 및 형상을 J-적분법과 등가영역적분법을 통해 파괴거동을 설명할 수 있도록 증분소성이론에 기초를 둔 p-version 유한요소해석이 채택되었다. 제안된 유한요소모델에 의한 수치해석결과는 이론 해와 h-version 유한요소해석과 비교되었다.

  • PDF

INSTRUMENTATION AND CONTROL STRATEGIES FOR AN INTEGRAL PRESSURIZED WATER REACTOR

  • UPADHYAYA, BELLE R.;LISH, MATTHEW R.;HINES, J. WESLEY;TARVER, RYAN A.
    • Nuclear Engineering and Technology
    • /
    • v.47 no.2
    • /
    • pp.148-156
    • /
    • 2015
  • Several vendors have recently been actively pursuing the development of integral pressurized water reactors (iPWRs) that range in power levels from small to large reactors. Integral reactors have the features of minimum vessel penetrations, passive heat removal after reactor shutdown, and modular construction that allow fast plant integration and a secure fuel cycle. The features of an integral reactor limit the options for placing control and safety system instruments. The development of instrumentation and control (I&C) strategies for a large 1,000 MWe iPWR is described. Reactor system modeling-which includes reactor core dynamics, primary heat exchanger, and the steam flashing drum-is an important part of I&C development and validation, and thereby consolidates the overall implementation for a large iPWR. The results of simulation models, control development, and instrumentation features illustrate the systematic approach that is applicable to integral light water reactors.

Estimation of the Fracture Resistance Curve for the Nuclear Piping Using the Standard Compact Tension Specimen (표준 CT시험편을 이용한 실배관 파괴저항 곡선 예측)

  • Park, Hong-Sun;Heo, Yong;Koo, Jae-Mean;Seok, Chang-Sung;Park, Jae-Sil;Cho, Sung-Keun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.9
    • /
    • pp.930-937
    • /
    • 2009
  • The estimation method of the fracture resistance curve for the pipe specimen was proposed using the load ratio method for the standard specimen. For this, the calculation method of the load - CMOD curve for the pipe specimen with the common format equation(CFE) was proposed by using data of the CT specimen. The proposed method agreed well with experimental data. The J-integral value and the crack extension were calculated from the estimated load - CMOD data. The fracture resistance curve was estimated from the calculated J-integral and the crack extension. From these results, it have been seen that the proposed method is reliable to estimate the J-R curve of the pipe specimen.

ORLICZ-TYPE INTEGRAL INEQUALITIES FOR OPERATORS

  • Neugebauer, C.J.
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.1
    • /
    • pp.163-176
    • /
    • 2001
  • We examine Orlicz-type integral inequalities for operators and obtain as a corollary a characterization of such inequalities for the Hardy-Littlewood maximal operator extending the well-known L(sup)p-norm inequalities.

  • PDF

Evaluation of fracture toughness of dynamic interlaminar for CFRP laminate plates inserted interleaf (인터리브가 삽입된 CFRP 적층판의 인성평가)

  • 김지훈;강태식;한길영;김재열;심재기
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.91-96
    • /
    • 2001
  • In this paper, an investigation was performed on the dynamic interlaminar fracture toughness of CFRP(carbon filber rein-forcement plastics). Specimens used in this experiments are CF/PEEK laminated plates. In this experiments, Split Hopkin-sons Bar(SHPE) tes was apply to dynamic and notched flexure test. The model II fracture toughness of each unidirectional CFRP was estimated by the analyzed deflection of the specimen and J-integral with the measured impulsive load and reac-tions at the supported points. As an experimental results the vibration amplitude of [$0^{\circ}_10 /F_4 0^{\circ}_10 $] j-aminates appear more than that of [$0^{\circ}_10 /F_2 0^{\circ}_10 $ laminates for the j-integral and displacement velocity at a measuring point. Also, it is thought that the dynamic fracture toughness of two kind specimen(CF/PEEK) with the crease of displacement velocity becomes great at a measuring point with in the range of measurement.

  • PDF