• Title/Summary/Keyword: the Clarke generalized gradient

Search Result 4, Processing Time 0.018 seconds

CONVERGENCE ANALYSIS OF PERTURBED HEMIVARIATIONAL INEQUALITIES

  • Mansour, Mohamed-Ait;Riahi, Hassan
    • Journal of applied mathematics & informatics
    • /
    • v.14 no.1_2
    • /
    • pp.329-341
    • /
    • 2004
  • We consider the rate of convergence for a class of perturbed hemivariational inequalities in reflexive Banach Spaces. Our results can be viewed as an extension and refinement of some previous known results in this area.

GAP FUNCTIONS AND ERROR BOUNDS FOR GENERAL SET-VALUED NONLINEAR VARIATIONAL-HEMIVARIATIONAL INEQUALITIES

  • Jong Kyu Kim;A. A. H. Ahmadini;Salahuddin
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.3
    • /
    • pp.867-883
    • /
    • 2024
  • The objective of this article is to study the general set-valued nonlinear variational-hemivariational inequalities and investigate the gap function, regularized gap function and Moreau-Yosida type regularized gap functions for the general set-valued nonlinear variational-hemivariational inequalities, and also discuss the error bounds for such inequalities using the characteristic of the Clarke generalized gradient, locally Lipschitz continuity, inverse strong monotonicity and Hausdorff Lipschitz continuous mappings.

ERROR BOUNDS FOR NONLINEAR MIXED VARIATIONAL-HEMIVARIATIONAL INEQUALITY PROBLEMS

  • A. A. H. Ahmadini;Salahuddin;J. K. Kim
    • Nonlinear Functional Analysis and Applications
    • /
    • v.29 no.1
    • /
    • pp.15-33
    • /
    • 2024
  • In this article, we considered a class of nonlinear variational hemivariational inequality problems and investigated a gap function and regularized gap function for the problems. We discussed the global error bounds for such inequalities in terms of gap function and regularized gap functions by utilizing the Clarke generalized gradient, relaxed monotonicity, and relaxed Lipschitz continuous mappings. Finally, as applications, we addressed an application to non-stationary non-smooth semi-permeability problems.

ON GAP FUNCTIONS OF VARIATIONAL INEQUALITY IN A BANACH SPACE

  • Kum, Sang-Ho;Lee, Gue-Myung
    • Journal of the Korean Mathematical Society
    • /
    • v.38 no.3
    • /
    • pp.683-695
    • /
    • 2001
  • In this paper we are concerned with theoretical properties of gap functions for the extended variational inequality problem (EVI) in a general Banach space. We will present a correction of a recent result of Chen et. al. without assuming the convexity of the given function Ω. Using this correction, we will discuss the continuity and the differentiability of a gap function, and compute its gradient formula under tow particular situations in a general Banach space. Our results can be regarded as infinite dimensional generalizations of the well-known results of Fukushima, and Zhu and Marcotte with soem modifications.

  • PDF