• Title/Summary/Keyword: the 3D FEM model

Search Result 325, Processing Time 0.034 seconds

Finite Element Analysis of an Agricultural Tractor Cabin based on the OECD Standard(code 4) (OECD규정(제4항)에 기초한 농업용 트랙터 캐빈의 유한요소 해석)

  • 하창욱;김현진;구남서;권영두
    • Journal of Biosystems Engineering
    • /
    • v.28 no.4
    • /
    • pp.305-314
    • /
    • 2003
  • The ROPS of an agricultural tractor is designed to protect its driver when the tractor overturns. Although the current OECD tests to determine whether the ROPS meets the requirements of the OECD regulation are desirable, they need long time to test. We experimental time and effort by using CAE. We conducted a finite element analysis for the ROPS design of a Dae-Dong tractor cabin in an attempt to reduce the design and manufacturing time. This study shows the interpretative skill using MARC(v.2000) for designing ROPS and difference between the results of testing and FEA. Design process is generally divided into two phases: a concept and a detail design. The concept design uses simple analysis to predict structural behavior, whereas the detail design involves a finite element analysis performed by the results of the concept design. This study focused on the detail design and used Patran(v.2000r2) and MARC(v.2000) of the MSC software corporation. The model consisted of 4812 elements and 4582 nodes. Four tests. specified in the OECD standards, were performed: (1) longitudinal loading test (2) rear crushing test (3) side loading test (4), and front crushing test. Independent analyses were also performed for each test, along with a sequential analysis. When compared, the results of the independent and sequential analyses were found to be similar to the test results.

FEM Analysis of the Effects of Mouth guard material properties on the Head and Brain under Mandibular Impact (구강보호장치의 재료적인 특성이 하악골 충격 시악골 및 두부에 미치는 영향에 관한 유한요소분석)

  • Kang, Nam-Hyun;Kim, Hyung-Sub;Woo, Yi-Hyung;Choi, Dae-Gyun
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.4
    • /
    • pp.325-334
    • /
    • 2008
  • Statement of problem & Purpose: The purpose of this study was to investigate the effect of a mouth guard material properties on the skull and brain when they were under impact loads on mandible. Material and methods: Two customized mouth protectors having different material propeerst ieach other were made for a female Korean who had no history of brain trauma, no cerebral diseases, nomal occlusion and natural dentition. The 3D finite element model of human skull and brain scanned by means of computed tomography was constructed. The FEM model of head was composed of 407,825 elements and 82,138 nodes, including skull, brain, maxilla, mandible, articular disc, teeth and mouth guard. The stress concentrations on maxillary teeth, maxilla and skull with two mouth guards were evaluated under oblique impact load of 800N onto mandibular 3 loading points for 0.1sec. And the brain relative displacement was compared in two different mouth guard materials under same condition. Result and Conclusion: The results were as follows; 1. In comparison of von Mises stress on maxillary teeth, a soft mouth guard material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 2. In comparison of von Mises stress on maxilla and skull, A soft mouth protector material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 3. For impact loads on mandible, there were more stress concentrated area on maxilla and skull with hard mouth guard than soft with mouth protector. 4. For impact loads on mandible, brain relative displacement had little relation with mouth guard material properties. In results of this study, soft mouth guard materials were superior to hard mouth guard materials for mandible impact loads for prevention of sports injuries. Although the results of this study were not enough to figure out the roles of needed mouth guard material properties for a human head, we got some knowledge of the pattern about stress concentration and distribution on maxilla and skull for impact loads with soft or hard mouth protector. More studies are needed to substantiate the relationship between the mouth guard materials and sports injuries.

Seismic Fragility Analysis of Curved Beam with I-Shape Section (I-Shape 단면을 갖는 곡선 보의 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Hoyoung
    • Journal of the Society of Disaster Information
    • /
    • v.14 no.3
    • /
    • pp.379-386
    • /
    • 2018
  • Purpose: This study was to the fragility evaluation of I-shape curved beam structure subjected to strong ground motions including Gyeongju and Pohang earthquakes Method: In particular, to conduct the analytical model, ABAQUS and ANSYS platform was used in this study. Furthermore, the analytical model using 3D Finite Element Model (FEM) was validated, in comparison to the theoretical solutions at the location of 025L, 05L, and 0.75L in static loading condition. In addition, in order to evaluate the seismic fragility of the curved beam structure, 20 seismic ground motions were selected and Monte-Carlo Simulation was used for the empirical fragility evaluation from 0.2g to 1.5g. Result: It was interesting to find that the probability of the system failure was found at 0.2g, as using 190 MPa limit state and the probability of the failure using 390 MPa limit state was starting from 0.6g. Conclusion: This study showed the comparison of the theoretical solution with analytical solution on I-shaped curved beam structures and it was interesting to note that the system subjected to strong ground motions was sensitive to high frequency earthquake. Further, the seismic fragility corresponding to the curved beam shapes must be evaluated.

A Behavioral Analysis of Curved Steel Box Bridge Associated with Diaphragm's Shape and Spacing (다이아프램 형상 및 간격에 따른 곡선 강박스거더의 거동해석)

  • Kim, Yun-Tae;Kim, Sang-Chel
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.1
    • /
    • pp.205-215
    • /
    • 2006
  • In this study 3-D shell FEM model was applied to analyze the behavior of curved steel box girders stiffened by diaphragms. The reliability of the analytical method has been proved by comparing with the existing results. It was also found from this analysis that main factors affecting a distortional stress are length of a girder, curvature of the girder, and spacing of diaphragms. A modelled bridge with 30m of span length and 40m of radius was analyzed to find an optimum spacing of diaphragm, and as a result of applying different spacings, 5m was found to be most appropriate to control the stress ratio regulated by specifications. In the effect of diaphragm shape, the rhamen-typed diaphragm is found to be more effective than the fully filled-up one in the range of opening ratio of 0.4 to 0.6. But, the fully filled-up diaphragm had more efficiency in terms of reducing the distortional stress than X-truss typed diaphragm.

Effect of Depth on Pipeline Stress and Displacement in Cold Regions with Thaw settlement (배관 매설깊이가 극한지 융해침하 시 배관응력 및 변위에 주는 영향)

  • Kim, Kyung Il;Yeom, Kyu Jung;Oh, Kyu Hwan;Kim, Woo Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.82-88
    • /
    • 2016
  • Resource development is needed in order to develop the industry. However, because resources are running out, there is a growing interest in the arctic regions. If you want to develop resources in cold regions, it is necessary to understand the environment there and it should be a priority to secure proper technology for construction. In particular, thaw settlement, which frequently occur in Arctic regions, have a fatal effect on essential pipeline needed to transport resources. Therefore, it is important to analyze how piping will be impacted by thaw settlement. In this study, we developed 3-D FEM model in order to analyze the influence of the buried depth of the pipe at the time of thaw settlement. We analyzed a displaced pipe which is subjected to stress and considered Elasto-plastic, using the finite element analysis according to these Arctic environments.

A study on the comparison by the methods of estimating the relaxation load of SEM-pile (SEM파일의 이완하중 산정방법별 이완하중량 비교 연구)

  • Kim, Hyeong-Gyu;Park, Eun-Hyung;Cho, Kook-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.20 no.3
    • /
    • pp.543-560
    • /
    • 2018
  • With the increased development in downtown underground space facilities that vertically cross under a railway at a shallow depth, the demand for non-open cut method is increasing. However, most construction sites still adopt the pipe roof method, where medium and large diameter steel pipes are pressed in to form a roof, enabling excavation of the inside space. Among the many factors that influence the loosening region and loads that occur while pressing in steel pipes, the size of the pipe has the largest impact, and this factor may correspond to the magnitude of load applied to the underground structure inside the steel pipe roof. The super equilibrium method (SEM) has been developed to minimize ground disturbance and loosening load, and uses small diameter pipes of approximately 114 mm instead of conventional medium and large diameter pipes. This small diameter steel pipe is called an SEM pile. After SEM piles are pressed in and the grouting reinforcement is constructed, a crossing structure is pressed in by using a hydraulic jack without ground subsidence or heaving. The SEM pile, which plays the role of timbering, is a fore-poling pile of approximately 5 m length that prevents ground collapse and supports surface load during excavation of toe part. The loosening region should be adequately calculated to estimate the spacing and construction length of the piles and stiffness of members. In this paper, we conducted a comparative analysis of calculations of loosening load that occurs during the press-in of SEM pile to obtain an optimal design of SEM. We analyzed the influence of factors in main theoretical and empirical formulas applied for calculating loosening regions, and carried out FEM analysis to see an appropriate loosening load to the SEM pile. In order to estimate the soil loosening caused by actual SEM-pile indentation and excavation, a steel pipe indentation reduction model test was conducted. Soil subsidence and soil loosening were investigated quantitatively according to soil/steel pipe (H/D).

Nonlinear Lateral Behavior and Cross-Sectional Stress Distribution of Concrete Rocking Columns (콘크리트 회전형 기둥의 비선형 횡방향 거동 및 단면응력 분포 분석)

  • Roh, Hwa-Sung;Hwang, Woong-Ik;Lee, Hu-Seok;Lee, Jong-Seh
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.285-292
    • /
    • 2012
  • Fixed connection is generally used for beam and column connections of concrete structures, but significant damages at the connection due to severe earthquakes have been reported. In order to reduce damages of the connection and improve seismic performance of the connection, several innovative connections have been suggested. One newly proposed connection type allows a rotation of the connection for applications in rotating or rocking beams, columns, and shear walls. Such structural elements would provide a nonlinear lateral force-displacement response since their contact depth developed during rotation is gradually reduced and the stress across the sections of the elements is non-linearly distributed around a contact area, which is called an elastic hinge region in the present study. The purpose of the present study is to define the elastic hinge region or length for the rocking columns, through investigating the cross-sectional stress distribution during their lateral behavior. Performing a finite element analysis (FEA), several parameters are considered including axial load levels (5% and 10% of nominal strength), different boundary conditions (confined-ends and cantilever types), and slenderness ratios (length/depth = 5, 7, 10). The FEA results showed that the elastic hinge length does not directly depend on the parameters considered, but it is governed by a contact depth only. The elastic hinge length started to develop after an opening state and increased non-linearly until a rocking point(pre-rocking). However, the length did not increase any more after the rocking point (post-rocking) and remained as a constant value. Half space model predicting the elastic hinge length is adapted and the results are compared with the numerical results.

Numerical finite element study of a new perforated steel plate shear wall under cyclic loading

  • Farrokhi, Ali-Akbar;Rahimi, Sepideh;Beygi, Morteza Hosseinali;Hoseinzadeh, Mohamad
    • Earthquakes and Structures
    • /
    • v.22 no.6
    • /
    • pp.539-548
    • /
    • 2022
  • Steel plate shear walls (SPSWs) are one of the most important and widely used lateral load-bearing systems. The reason for this is easier execution than reinforced concrete (RC) shear walls, faster construction time, and lower final weight of the structure. However, the main drawback of SPSWs is premature buckling in low drift ratios, which affects the energy absorption capacity and global performance of the system. To address this problem, two groups of SPSWs under cyclic loading were investigated using the finite element method (FEM). In the first group, several series of circular rings have been used and in the second group, a new type of SPSW with concentric circular rings (CCRs) has been introduced. Numerous parameters include in yield stress of steel plate wall materials, steel panel thickness, and ring width were considered in nonlinear static analysis. At first, a three-dimensional (3D) numerical model was validated using three sets of laboratory SPSWs and the difference in results between numerical models and experimental specimens was less than 5% in all cases. The results of numerical models revealed that the full SPSW undergoes shear buckling at a drift ratio of 0.2% and its hysteresis behavior has a pinching in the middle part of load-drift ratio curve. Whereas, in the two categories of proposed SPSWs, the hysteresis behavior is complete and stable, and in most cases no capacity degradation of up to 6% drift ratio has been observed. Also, in most numerical models, the tangential stiffness remains almost constant in each cycle. Finally, for the innovative SPSW, a relationship was suggested to determine the shear capacity of the proposed steel wall relative to the wall slenderness coefficient.

Eliminating concrete cover separation of NSM strengthened beams by CFRP end anchorage

  • Hosen, Md. Akter;Jumaat, Mohd Zamin;Islam, A.B.M. Saiful;Kamruzzaman, Mohamed;Huda, Md. Nazmul;Soeb, Mahmudur Rahman
    • Structural Engineering and Mechanics
    • /
    • v.56 no.6
    • /
    • pp.899-916
    • /
    • 2015
  • Upgrading or strengthening of existing reinforced concrete (RC) infrastructure is an emerging demand nowadays. Near Surface Mounted (NSM) technique is very promising approach for flexural strengthening of RC members. However, premature failure such as concrete cover separation failure have been a main concern in utilizing this technique. In this study, U-wrap end anchorage with carbon fiber reinforced polymer (CFRP) fabrics is proposed to eliminate the concrete cover separation failure. Experimental programs were conducted to the consequence of U-wrap end anchorage on the flexurally strengthened RC beams with NSM-steel. A total of eight RC rectangular beam specimens were tested. One specimen was kept unstrengthened as a reference; three specimens were strengthened with NSM-steel bars and the remaining four specimens were strengthened with NSM-steel bars and U-wrap end anchorage using CFRP fabrics. A 3D non-linear finite element model (FEM) was developed to simulate the flexural response of the tested specimens. It is revealed that NSM-steel (with and without end-anchors) significantly improved the flexural strength; moreover decreased deflection and strains compared with reference specimen. Furthermore, NSM-steel with end anchorage strengthened specimens revealed the greater flexural strength and improve failure modes (premature to flexure) compared with the NSM-steel without end anchorage specimens. The results also ensured that the U-wrap end anchorage completely eliminate the concrete cover separation failure.

Stress distribution in bone surrounding maxillary molar implants under different crown-to-fixture ratio: A 3D FEM analysis (치관/고정체 비에 따른 상악 구치부 임플란트 주변골의 응력 분포에 대한 3차원 유한요소법적 분석)

  • Park, Jong-Chan;Shin, Sang-Wan;Kwon, Kung-Rock
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.46 no.5
    • /
    • pp.479-489
    • /
    • 2008
  • Statement of the problem: Under anatomical limitations on maxillary posterior region, a poor crown-to root ratio acting on dental implants can result in undesirable stress in surrounding bone, which in turn can cause bone defects and eventual failure of implants. Purpose: The purpose is to compare stress distribution due to different crown-root ratio and effect of splinting between natural teeth and implants in maxillary molar area under different loads. Material and methods: Analysis of stress arising supporting bone of the natural teeth and the implant was made with 3-dimensional finite element method. The model simulated naturel teeth was made with 2nd premolar and 1st molar in the maxillary molar region (Model T). The model simulated implants placed on same positions with two parallel implants of Straumann Dental Implant cemented abutment (Model I). Each model was designed in different crown-root ratio (0.7:1, 1:1, 1.25:1) and set cement type gold crown to make it non-splinted or splinted. After that, 300 N force was loaded to each model in five ways (Load 1: middle of occlusal table, Load 2: middle of buccal cusp, Load 3: middle of lingual cusp, Load 4: horizontal load to buccal cusp of anterior abutment only, Load 5: horizontal load to middle of buccal cusp of each abutment), and stress distribution was analyzed. Results and conclusion: On all occasions, stress was concentrated at the cervical region of the implant. Under load 1, 2 and 3, stress was not increased even when crown-root ratio increases, but under load 4 and 5, when crown-root ratio increases, stress also increased. There was difference in stress values between natural teeth and implants when crown-root ratio gradually increases; In case of natural teeth, splinting decreased stress under vertical and horizontal loads. In case of implants, splinting decreased stress under vertical loads 1,2 and 3, but increased maximal stress under loads 2 and 3. Under horizontal loads, splinting decreased stress, however the effect of splinting decreased under load 5 than load 4. Furthermore, the stress was increased, when crown-root ratio is 1.25:1. Clinical implications: This limited finite element study suggests that the stress on supporting bone may be increased under non-axial loads and poor crown-root ratio. Under poor crown-root ratio, excessive stress was generated at the cervical region of the implant, and decreased splinting effect for stress distribution, which can be related to clinical failure.