구강보호장치의 재료적인 특성이 하악골 충격 시악골 및 두부에 미치는 영향에 관한 유한요소분석

FEM Analysis of the Effects of Mouth guard material properties on the Head and Brain under Mandibular Impact

  • 강남현 (경희대학교 치과대학 치과보철학교실) ;
  • 김형섭 (경희대학교 치과대학 치과보철학교실) ;
  • 우이형 (경희대학교 치과대학 치과보철학교실) ;
  • 최대균 (경희대학교 치과대학 치과보철학교실)
  • Kang, Nam-Hyun (Dept. of Prosthodontics, College of Dentistry, Graduate School, Kyung Hee University) ;
  • Kim, Hyung-Sub (Dept. of Prosthodontics, College of Dentistry, Graduate School, Kyung Hee University) ;
  • Woo, Yi-Hyung (Dept. of Prosthodontics, College of Dentistry, Graduate School, Kyung Hee University) ;
  • Choi, Dae-Gyun (Dept. of Prosthodontics, College of Dentistry, Graduate School, Kyung Hee University)
  • 발행 : 2008.08.29

초록

연구목적: 본 연구의 목적은 하악골 충격 시 구강보호장치의 재료적 성질에 따른 악골과 두부에 미치는 영향을 조사하는 것이다. 연구재료 및 방법: 경질과 연질의 서로 다른 성질을 가지는 구강보호장치를 두부외상이나 뇌질환 병력이 없고 정상교합과 자연치열을 가진 한국 성인 여성에게 제작하고, CT를 이용하여 악골과 두부의 3차원 유한요소모델을 제작하였다. 이 유한요소모델은 두개골, 뇌, 상악골, 하악골, 관절원판, 치아와 구강보호장치를 포함하며 407,825개의 elements와 82,138개의 node로 구성되어 있다. 0.1초동안 하악골 3부위에서 800 N으로 사선 방향의 힘을 가하였을 때 두 가지 재료에 따른 상악 치아, 상악골 및 두개골의 응력분포를 평가하였고 동일한 조건하에서 두 재료에 따른 뇌의 변위량을 비교하였다. 결과: 이 연구를 통해 다음과 같은 결과를 얻었다. 1. 상악치아에서 유효응력 값을 비교하였을 때 연질의 구강보호장치가 경질의 구강보호 장치보다 응력값이 유의차 있게 작게 나타났다 (P < .05). 2. 상악골과 두개골에서 응력값을 비교하였을 때 연질의 구강보호장치가 경질의 구강보호장치보다 응력값이 유의차 있게 작게 나타났다 (P < .05). 3. 경질의 구강보호장치에서 연질의 구강보호장치보다 상악치아 및 상악골과 두개골에 더 많은 응력집중부위를 보였다. 4. 경질의 구강보호장치와 연질의 구강보호장치 간에 하악 충격 시 뇌의 변위량은 연질의 구강보호장치 쪽이 크게 나타났으나 유의차는 없었다. 본 연구를 통하여 악골 충격 시에 경질 및 연질 구강보호장치가 상악골과 두개골에서의 응력분포에 미치는 양상을 알 수 있었지만, 아직도 이의 상관관계를 모두 파악하기에는 불충분한 점이 많으리라 생각되며, 스포츠 외상에 따른 구강보호장치의 재료에 따른 상관관계에 대하여 보다 더 많은 연구가 필요할 것으로 사료된다.

Statement of problem & Purpose: The purpose of this study was to investigate the effect of a mouth guard material properties on the skull and brain when they were under impact loads on mandible. Material and methods: Two customized mouth protectors having different material propeerst ieach other were made for a female Korean who had no history of brain trauma, no cerebral diseases, nomal occlusion and natural dentition. The 3D finite element model of human skull and brain scanned by means of computed tomography was constructed. The FEM model of head was composed of 407,825 elements and 82,138 nodes, including skull, brain, maxilla, mandible, articular disc, teeth and mouth guard. The stress concentrations on maxillary teeth, maxilla and skull with two mouth guards were evaluated under oblique impact load of 800N onto mandibular 3 loading points for 0.1sec. And the brain relative displacement was compared in two different mouth guard materials under same condition. Result and Conclusion: The results were as follows; 1. In comparison of von Mises stress on maxillary teeth, a soft mouth guard material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 2. In comparison of von Mises stress on maxilla and skull, A soft mouth protector material had significantly lower stress values on measuring point than a hard mouth protector materials (P < .05). 3. For impact loads on mandible, there were more stress concentrated area on maxilla and skull with hard mouth guard than soft with mouth protector. 4. For impact loads on mandible, brain relative displacement had little relation with mouth guard material properties. In results of this study, soft mouth guard materials were superior to hard mouth guard materials for mandible impact loads for prevention of sports injuries. Although the results of this study were not enough to figure out the roles of needed mouth guard material properties for a human head, we got some knowledge of the pattern about stress concentration and distribution on maxilla and skull for impact loads with soft or hard mouth protector. More studies are needed to substantiate the relationship between the mouth guard materials and sports injuries.

키워드

참고문헌

  1. Keiichi I, Tomotaka T, Tatsuya I. Dentistry in japan 2002;38:195-202
  2. Kumaresan S, Radhakrishan S. Importance of partitioning membranes of the brain and the influence of the neck in head injury modelling. Med Biol Eng Comput 1996;34:27- 32 https://doi.org/10.1007/BF02637019
  3. Iwata T, Watase J, Kuroda T, Tsutsumi S, Maruyama T. Studies of mechanical effects of occlusal force on mandible and temporomandibular joint. J Osaka Univ Dent Sch 1981;21:207-15
  4. Tanaka E, Tanne K, Sakuda M. A three-dimensional finite element model of the mandible including the TMJ and its application to stress analysis in the TMJ during clenching. Med Eng Phys 1994;16:316-22 https://doi.org/10.1016/1350-4533(94)90058-2
  5. Miyazaki M, Inage H, Onose H. Use of an ultrasonic device for the determination of elastic modulus of dentin. J Oral Sci 2002;44:19-26 https://doi.org/10.2334/josnusd.44.19
  6. de Wet FA, Heyns M, Pretorius J. Shock absorption potential of different mouth guard materials. J Prosthet Dent 1999;82:301-6 https://doi.org/10.1016/S0022-3913(99)70084-3
  7. An SJ, Lee SB. The effect on appendage muscle strength due to increase in occlusal vertical dimension. Korea J Stomato Func Occl 2001;17:222-44
  8. Craig RG, Godwin WC. Properties of athletic mouth protectors and materials. J oral rehabilitation 2002;29:146-50 https://doi.org/10.1046/j.1365-2842.2002.00831.x
  9. Going RE, Loehman RE, Chan MS. Mouthguard materials: their physical and mechanical properties. J Am Dent Assoc 1974;89:132-8 https://doi.org/10.14219/jada.archive.1974.0354
  10. Jagger R, Milward P, Waters M. Properties of an Experimental mouthguard material Int J Prosthodont 2000;13:416-9
  11. de Wet FA, Heyns M, Pretorius J. Shock absorption potential of mouth guard materials. J Prosthet Dent 1999;82:301-6 https://doi.org/10.1016/S0022-3913(99)70084-3