• Title/Summary/Keyword: the principal component analysis

Search Result 2,531, Processing Time 0.032 seconds

The Comparison of Singular Value Decomposition and Spectral Decomposition

  • Shin, Yang-Gyu
    • Journal of the Korean Data and Information Science Society
    • /
    • v.18 no.4
    • /
    • pp.1135-1143
    • /
    • 2007
  • The singular value decomposition and the spectral decomposition are the useful methods in the area of matrix computation for multivariate techniques such as principal component analysis and multidimensional scaling. These techniques aim to find a simpler geometric structure for the data points. The singular value decomposition and the spectral decomposition are the methods being used in these techniques for this purpose. In this paper, the singular value decomposition and the spectral decomposition are compared.

  • PDF

A Channel Equalization Algorithm Using Neural Network Based Data Least Squares (뉴럴네트웍에 기반한 Data Least Squares를 사용한 채널 등화기 알고리즘)

  • Lim, Jun-Seok;Pyeon, Yong-Kuk
    • The Journal of the Acoustical Society of Korea
    • /
    • v.26 no.2E
    • /
    • pp.63-68
    • /
    • 2007
  • Using the neural network model for oriented principal component analysis (OPCA), we propose a solution to the data least squares (DLS) problem, in which the error is assumed to lie in the data matrix only. In this paper, we applied this neural network model to channel equalization. Simulations show that the neural network based DLS outperforms ordinary least squares in channel equalization problems.

A New Focus Measure Using Principal Component Analysis (주성분 분석을 이용한 포커스 측정 기법)

  • Lee, Ik-Hyun;Mahmood, Muhammad Tariq;Choi, Tae-Sun
    • Proceedings of the IEEK Conference
    • /
    • 2008.06a
    • /
    • pp.1007-1008
    • /
    • 2008
  • This paper introduces a new focus measure using Principal Component Analysis (PCA) for Shape from Focus (SFF). A neighborhood consisting of seven pixels is taken and the focus quality is computed over the whole sequence. The experimental results demonstrate effectiveness and robustness of the proposed method.

  • PDF

SVM-Guided Biplot of Observations and Variables

  • Huh, Myung-Hoe
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.491-498
    • /
    • 2013
  • We consider support vector machines(SVM) to predict Y with p numerical variables $X_1$, ${\ldots}$, $X_p$. This paper aims to build a biplot of p explanatory variables, in which the first dimension indicates the direction of SVM classification and/or regression fits. We use the geometric scheme of kernel principal component analysis adapted to map n observations on the two-dimensional projection plane of which one axis is determined by a SVM model a priori.

Photomosaics Using Principal Component Analysis (주성분 분석을 사용한 포토모자이크)

  • Chun, Young-Jae;Oh, Kyoung-Su;Cho, Sung-Hyun
    • Journal of Korea Game Society
    • /
    • v.11 no.1
    • /
    • pp.139-146
    • /
    • 2011
  • We propose a photomosaic method using PCA(Principal Component Analysis), which uses PCA results to find the most similar candidate fast and correctly. When two images are projected onto a certain principal component, if their coefficients are similar, they are also likely to be similar. Thus our photomosaic method using PCA can take care of both colors and shapes of images. Our method using coefficient comparison is faster than the one using all color comparison and more correct than the one using average comparison. Our hardware accelerated photomosaic algorithm can handle video images in real-time.

A Comparative Study on Isomap-based Damage Localization (아이소맵을 이용한 결함 탐지 비교 연구)

  • Koh, Bong-Hwan;Jeong, Min-Joong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2011.04a
    • /
    • pp.278-281
    • /
    • 2011
  • The global coordinates generated from Isomap algorithm provide a simple way to analyze and manipulate high dimensional observations in terms of their intrinsic nonlinear degrees of freedom. Thus, Isomap can find globally meaningful coordinates and nonlinear structure of complex data sets, while neither principal component analysis (PCA) nor multidimensional scaling (MDS) are successful in many cases. It is demonstrated that the adapted Isomap algorithm successfully enhances the quality of pattern classification for damage identification in various numerical examples.

  • PDF

An approach for optimal sensor placement based on principal component analysis and sensitivity analysis under uncertainty conditions

  • Beygzadeh, Sahar;Torkzadeh, Peyman;Salajegheh, Eysa
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.1
    • /
    • pp.59-80
    • /
    • 2022
  • In the present study, the objective is to detect the structural damages using the responses obtained from the sensors at the optimal location under uncertainty conditions. Reducing the error rate in damage detection process due to responses' noise is an important goal in this study. In the proposed algorithm for optimal sensor placement, the noise of responses recorded from the sensors is initially reduced using the principal component analysis. Afterward, the optimal sensor placement is obtained by the damage detection equation based sensitivity analysis. The sensors are placed on degrees of freedom corresponding to the minimum error rate in structural damage detection through this procedure. The efficiency of the proposed method is studied on a truss bridge, a space dome, a double-layer grid as well as a three-story experimental frame structure and the results are compared. Moreover, the performance of the suggested method is compared with three other algorithms of Average Driving Point Residue (ADPR), Effective Independence (EI) method, and a mass weighting version of EI. In the examples, young's modulus, density, and cross-sectional areas of the elements are considered as uncertainty parameters. Ultimately, the results have demonstrated that the presented algorithm under uncertainty conditions represents a high accuracy to obtain the optimal sensor placement in the structures.

Optimal Thoracic Sound Data Extraction Using Principal Component Analysis (주성분 분석을 이용한 최적 흉부음 데이터 검출)

  • 임선희;박기영;최규훈;박강서;김종교
    • Proceedings of the IEEK Conference
    • /
    • 2003.07e
    • /
    • pp.2156-2159
    • /
    • 2003
  • Thoracic sound has been widely known as a good method to examine thoracic disease. But, it's difficult to diagnose with correct data according to patient's thoracic position from same patient who has thoracic disease. Therefore, it is necessary to normalize the data for lung sound objectively In this paper, we'd like to detect a useful data for medical examination by applying PCA(Principal Component Analysis) to thoracic sound data and then present a objective data about lung and heart sound for thoracic disease.

  • PDF

Stream Data Analysis of the Weather on the Location using Principal Component Analysis (주성분 분석을 이용한 지역기반의 날씨의 스트림 데이터 분석)

  • Kim, Sang-Yeob;Kim, Kwang-Deuk;Bae, Kyoung-Ho;Ryu, Keun-Ho
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.28 no.2
    • /
    • pp.233-237
    • /
    • 2010
  • The recent advance of sensor networks and ubiquitous techniques allow collecting and analyzing of the data which overcome the limitation imposed by time and space in real-time for making decisions. Also, analysis and prediction of collected data can support useful and necessary information to users. The collected data in sensor networks environment is the stream data which has continuous, unlimited and sequential properties. Because of the continuous, unlimited and large volume properties of stream data, managing stream data is difficult. And the stream data needs dynamic processing method because of the memory constraint and access limitation. Accordingly, we analyze correlation stream data using principal component analysis. And using result of analysis, it helps users for making decisions.

Classification of Ambient Particulate Samples Using Cluster Analysis and Disjoint Principal Component Analysis (군집분석법과 분산주성분분석법을 이용한 대기분진시료의 분류)

  • 유상준;김동술
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.13 no.1
    • /
    • pp.51-63
    • /
    • 1997
  • Total suspended particulate matters in the ambient air were analyzed for eight chemical elements (Ca, Co, Cu, Fe, Mn, Pb, Si, and Zn) using an x-ray fluorescence spectrometry (XRF) at the Kyung Hee University - Suwon Campus during 1989 to 1994. To use these data as basis for source identification study, membership of each sample was selected to represent one of the well defined sample groups. The data sets consisting of 83 objects and 8 variables were initially separated into two groups, fine (d$_{p}$<3.3 ${\mu}{\textrm}{m}$) and coarse particle groups (d$_{p}$>3.3 ${\mu}{\textrm}{m}$). A hierarchical clustering method was examined to obtain possible member of homogeneous sample classes for each of the two groups by transforming raw data and by applying various distances. A disjoint principal component analysis was then used to define homogeneous sample classes after deleting outliers. Each of five homogeneous sample classes was determined for the fine and the coarse particle group, respectively. The data were properly classified via an application of logarithmic transformation and Euclidean distance concept. After determining homogeneous classes, correlation coefficients among eight chemical variables within all the homogeneous classes for calculated and meteorological variables (temperature. relative humidity, wind speed, wind direction, and precipitation) were examined as well to intensively interpret environmental factors influencing the characteristics of each class for each group. According to our analysis, we found that each class had its own distinct seasonal pattern that was affected most sensitively by wind direction.ion.

  • PDF