Park, Suwan;Jeon, Daehoon;Jung, Soyeon;Kim, Joohwan;Lee, Doojin
Journal of Korean Society of Water and Wastewater
/
v.27
no.3
/
pp.351-361
/
2013
In this study the Principal Component Analysis (PCA) was applied to flow data in a water distribution pipe system to analyze the relevance between the flow observation dates, which have the outliers of observed night flows, and the maintenance records. The data was obtained from four small size water distribution blocks to which 13 maintenance records such as pipe leak and water meter leak belong. The flow data during four months were used for the analysis. The analysis was carried out to identify an appropriate analysis period for a PCA model for a water distribution block. To facilitate the analyses a computational algorithm was developed. MATLAB was utilized to realize the algorithm as a computer program. As a result, an appropriate PCA period for each of the case study small size water distribution blocks was identified.
KIPS Transactions on Software and Data Engineering
/
v.2
no.3
/
pp.205-208
/
2013
Generally, binary pattern transforms have been used in the field of the face recognition and facial expression, since they are robust to illumination. Thus, this paper proposes an illumination-robust face recognition system combining an MLDP, which improves the texture component of the LDP, and a 2D-PCA algorithm. Unlike that binary pattern transforms such as LBP and LDP were used to extract histogram features, the proposed method directly uses the MLDP image for feature extraction by 2D-PCA. The performance evaluation of proposed method was carried out using various algorithms such as PCA, 2D-PCA and Gabor wavelets-based LBP on Yale B and CMU-PIE databases which were constructed under varying lighting condition. From the experimental results, we confirmed that the proposed method showed the best recognition accuracy.
본 논문에서는 독립성분해석을 이용한 영상분리에 있어서의 잡음에 대한 강인성에 대한 주성분해석과 비교 연구를 함으로써, 독립성분해석(Independent Component Analysis, ICA)기법의 효율성을 고찰하고 분석하고자 한다. 원래의 인식 시스템 모델에 잡음을 주었을 때, ICA를 이용한 영상 분리의 잡음에 대한 강인성은 주성분 해석(Principal Component Analysis, PCA)기법에서 보다 더 잡음에 강인한 성질을 내포하고 있는데, 이는 PCA 보다 ICA가 분리하려는 영상정보의 상호관계를 더 약화시키는 작용을 하기 때문이다. 이러한 특성은 모의실험을 통해 확인되었다.
Journal of Korean Society for Atmospheric Environment
/
v.22
no.6
/
pp.808-820
/
2006
In regard to indoor air quality patterns, the government introduced various polices that were about managing and monitoring quality of indoor air as a major assignment, and also executed 'Indoor Air Quality Management Act' which was presented in the May, 2004. However, among the multi-usage facilities controlled by the Act, the school was not included yet. This study goal was to investigate PM 10 pollution patterns of the high school classrooms using a pattern recognition method based on cluster analysis and disjoint principal component analysis, and further to survey levels of inorganic elements in May, June, and September, 2004. A hierarchical clustering method was examined to obtain possible objects in pseudo homogeneous sample classes by transformation raw data and by applying various distance. Following the analysis, the disjoint principal component analysis was used to define homogeneous sample class after deleting outliers. Then three homogeneous Patterns were obtained as follows: the first class had been separated and objects in the class were considered to be sampled under semi-open condition. This class had high concentration of Ca, Fe, Mg, K, Al, and Na which are related with a soil and a chalk compounds. The second class was obtained in which objects were sampled while working air-conditioners and was identified low concentration of PM 10 and elements. Objects in the last class were assigned during rainy day. A chalk, soil element and various types of anthropogenic sources including combustions and industrial influenced the third class. This methodology was thought to be helpful enough to classify indoor air quality patterns and indoor environmental categories when controlling an indoor air quality.
This study was conducted to obtain the basic data for practical use of the Polygonatum genetic resources. The 20 collections were analyzed by principal component analysis of 8 characters and cluster analysis. In the principal analysis, the first, the second and the third components contributed 54.10%, 18.95% and 11.62% of the variations, respectively. The cumulative contribution from the first to the third principal components was 84.68%. The first principal component was related to shape and size of plant, and assimilatory, reserve and reproductive organs. The second principal component was related to growth and development of plant, and reserve organ. And the third principal component was related to growth and development of plant. Based on cluster analysis, the 20 collections were classified into 4 distinct groups with the average distance greater than 0.7 between groups. Group I was Polygonatum sibiricum $D_{ELAR}$ and Group II included P. odoratum var. pluriflorum $O_{HWI}$, P. odoratum var. pluriflorum $O_{HWI}$ for 'Variegatum' Y. Lee, for. nov., P. odoratum var. thunbergii $H_{ARA}$ and P. odoratum var. maximowiczii $K_{OIDZ}$. GroupIII was P. involucratum $M_{AXIM}$, P. desoulavyi $K_{OMAROV}$ and P. humile $F_{ISHER}$ ex. $M_{AXIM}$. And GroupIV included P. lasianthum var. coreanum $N_{AKAI}$ and P. inflatum $K_{OMAROV}$.
Journal of the Korean Society for Nondestructive Testing
/
v.23
no.3
/
pp.254-262
/
2003
In this study, acoustic emission (AE) signals due to surface cracking and moisture movement in the flat-sawn boards of oak (Quercus Variablilis) during drying under the ambient conditions were analyzed and classified using the principal component analysis. The AE signals corresponding to surface cracking showed higher in peak amplitude and peak frequency, and shorter in rise time than those corresponding to moisture movement. To reduce the multicollinearity among AE features and to extract the significant AE parameters, correlation analysis was performed. Over 99% of the variance of AE parameters could be accounted for by the first to the fourth principal components. The classification feasibility and success rate were investigated in terms of two statistical classifiers having six independent variables (AE parameters) and six principal components. As a result, the statistical classifier having AE parameters showed the success rate of 70.0%. The statistical classifier having principal components showed the success rate of 87.5% which was considerably than that of the statistical classifier having AE parameters.
The Journal of Korean Institute of Communications and Information Sciences
/
v.34
no.10B
/
pp.1111-1116
/
2009
In this paper, we discuss distortion-tolerant pattern recognition using computational integral imaging reconstruction. Three-dimensional object information is captured by the integral imaging pick-up process. The captured information is numerically reconstructed at arbitrary depth-levels by averaging the corresponding pixels. We apply Fisher linear discriminant analysis combined with principal component analysis to computationally reconstructed images for the distortion-tolerant recognition. Fisher linear discriminant analysis maximizes the discrimination capability between classes and principal component analysis reduces the dimensionality with the minimum mean squared errors between the original and the restored images. The presented methods provide the promising results for the classification of out-of-plane rotated objects.
Proceedings of the Korea Society for Industrial Systems Conference
/
2001.05a
/
pp.280-287
/
2001
The studies to estimate the surface spectral reflectance of an object have received widespread attention using the multi-spectral camera system. However, the multi-spectral camera system requires the additional color filter according to increment of the channel and system complexity is increased by multiple capture. Thus, this paper proposes an algorithm to reduce the estimation error of surface spectral reflectance with the conventional 3-band RGB camera. In the proposed method, adaptive principal components for each pixel are calculated by renewing the population of surface reflectances and the adaptive principal components can reduce estimation error of surface spectral reflectance of current pixel. To evacuate performance of the proposed estimation method, 3-band principal component analysis, 5-band wiener estimation method, and the proposed method are compared in the estimation experiment with the Macbeth ColorChecker. As a result, the proposed method showed a lower mean square ems between the estimated and the measured spectra compared to the conventional 3-band principal component analysis method and represented a similar or advanced estimation performance compared to the 5-band wiener method.
Proceedings of the Korea Information Processing Society Conference
/
2004.05a
/
pp.809-812
/
2004
본 논문에서는 다중해상도에서 기존의 그레이 블록 거리(grey block distance; GBD, 이하 GBD)알고리즘과 비교하여 이차원 영상간의 상대적 식별을 더 용이하게 하기 위한 새로운 GBD 알고리즘 방법을 제안한다. 이 제시된 방법은 다중해상도에서 기존의 GBD 알고리즘과 비교해서 영상이 급격히 변화하는 부분의 정보를 잃지 않게 개선할 수 있었다. 모의 실험 예로서 주성분분석(principal component analysis; 이하 PCA)기법과 독립성분분석(independent component analysis; 이하 ICA)기법을 적용하여 유용성과 제안된 방법이 이전의 연구보다 k가 감소할 때 편차는 줄어들어 좋은 영상 분류 특징을 보였으며, ICA가 PCA에 비하여 영상간의 상대적 식별을 용이하게 하여 빨리 수렴이 되는 것을 모의 실험을 통하여 확인하였다.
The Transactions of the Korean Institute of Electrical Engineers
/
v.36
no.11
/
pp.813-818
/
1987
In this paper, high resolution spectral estimation by AR modelling and principal comonent analysis is proposed. The given data can be expanded by the eigenvectors of the estimated covariance matrix. The eigenspectrum is obtained for each eigenvector using the Autoressive(AR) spectral estimation technique. The final spectrum estimate is obtained by weighting each eigenspectrum with the corresponding eigenvalue and summing them. Although the proposed method increases in computational complexity, it shows good frequency resolution especially for short data records and narrow-band data whose signal-to-noise ratio is low.
이메일무단수집거부
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.