• Title/Summary/Keyword: the principal component analysis

Search Result 2,531, Processing Time 0.029 seconds

Principal Component Analysis for the Growth Data of Rice (주성분분석을 이용한 수도의 생장해석)

  • Hahn, Weon-Sik;Chae, Yeong-Am
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.31 no.2
    • /
    • pp.173-178
    • /
    • 1986
  • Principal component analysis was used for ana1zing growth data to know the relationship between growth characteristics and yield as well as its components. The first principal component accounted for average time of the specific leaf area sampled, leaf area index, and dry weight, and the second component for the position of the changing point of growth characteristics. The component scores were more affected by the nitrogen level than variety. Yield were affected by fertility ratio and number of spikelets per hill which have close relation with the component score of leaf area index and dry weight per hill.

  • PDF

Analyzing Exon Structure with PCA and ICA of Short-Time Fourier Transform

  • Hwang Changha;Sohn Insuk
    • Proceedings of the Korean Statistical Society Conference
    • /
    • 2004.11a
    • /
    • pp.79-84
    • /
    • 2004
  • We use principal component analysis (PCA) to identify exons of a gene and further analyze their internal structures. The PCA is conducted on the short-time Fourier transform (STFT) based on the 64 codon sequences and the 4 nucleotide sequences. By comparing to independent component analysis (ICA), we can differentiate between the exon and intron regions, and how they are correlated in terms of the square magnitudes of STFTs. The experiment is done on the gene F56F11.4 in the chromosome III of C. elegans. For this data, the nucleotide based PCA identifies the exon and intron regions clearly. The codon based PCA reveals a weak internal structure in some exon regions, but not the others. The result of ICA shows that the nucleotides thymine (T) and guanine (G) have almost all the information of the exon and intron regions for this data. We hypothesize the existence of complex exon structures that deserve more detailed analysis.

  • PDF

Application of Sensor Fault Detection Scheme Based on AANN to Sensor Network (AANN-기반 센서 고장 검출 기법의 센서 네트워크에의 적용)

  • Lee, Young-Sam;Kim, Sung-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.229-231
    • /
    • 2006
  • NLPCA(Nonlinear Principal Component Analysis) is a novel technique for multivariate data analysis, similar to the well-known method of principal component analysis. NLPCA operates by a feedforward neural network called AANN(Auto Associative Neural Network) which performs the identity mapping. In this work, a sensor fault detection system based on NLPCA is presented. To verify its applicability, simulation study on the data supplied from sensor network is executed.

  • PDF

Sensitivity Analysis in Principal Component Regression : Numerical Investigation (주성분회귀(主成分回歸)에서의 민감도분석(敏感度分析) : 수치적(數値的) 연구(硏究))

  • Shin, Jae-Kyoung;Tarumi, Tomoyuki;Tanaka, Yutaka
    • Journal of the Korean Data and Information Science Society
    • /
    • v.2
    • /
    • pp.1-9
    • /
    • 1991
  • Shin, Tarumi and Tanaka(1989) discussed a method of sensitivity analysis in principal component regression(PCR) based on an influence function derived by Tanaka(1988). The present paper is its continuation. In this paper we first consider two new influence measures, then apply the proposed method to various data sets and discuss some properties of sensitivity analysis in PCR.

  • PDF

Watershed Classification Using Statistical Analysis of water Quality Data from Muju area (무주지역 수질특성자료의 통계학적 분석에 의한 소유역 구분)

  • 한원식;우남칠;이기철;이광식
    • Journal of Soil and Groundwater Environment
    • /
    • v.7 no.3
    • /
    • pp.19-32
    • /
    • 2002
  • This study is objected to identify the relations between surface- and shallow ground-water and the seasonal variation of their qualities in watersheds near Muju area. The water type shows mainly Ca-$HCO_3$type. Heavy-metal contamination of surface water is locally detected, due to the mixing with mine drainage. In October nitrate concentration is especially high in densely populated area. Cluster Analysis and Principal Component Analysis are implemented to interpret the complexity of the chemical variation of surface- and ground-water with large amount of chemical data. Based on the cluster analysis, surface-water was divided into five groups and ground-water into three groups. Principal Component Analysis efficiently supports the result of cluster analysis, allowing the identification of three main factors controlling the water quality. There are (1) hydrogeochemical factor, (2) anthropogenic factor and (3) heavy metal contaminated by mine drainage.

Low Frequency Relationship Analysis between PDSI and Global Sea Surface Temperature (PDSI와 범지구적 해수면온도와의 저빈도 상관성 분석)

  • Oh, Tae-Suk;Kim, Seong-Sil;Moon, Young-Il
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.3
    • /
    • pp.119-131
    • /
    • 2010
  • Drought is one of disaster causing factors to produce severe damage in the World because drought is destroyed to the ecosystem as well as to make difficult the economy of the drought area. This study, using Palmer Drought Severity Index carries out correlation analysis with sea surface temperatures. Comparative analysis carries out by calculated Palmer Drought Severity Index and past drought occurrence year. Result of comparative analysis, PDSI indexes were in accord with the past drought. Cluster analysis for correlation analysis carries out using precipitation and temperature that is input datas palmer drought severity index, and the result of cluster analysis was classified as 6. Also, principal component carries out using result of cluster analysis. 14 principal component analyze out through principal component analysis. Using analyzed 14 principal component carries out correlation analysis with sea surface temperature that is delay time from 0month until 11month. Correlation analysis carries out sea surface temperatures and calculated cycle component of the low frequency through Wavelet Transform analysis form principal component. Result of correlation analysis, yang(+) correlation is bigger than yin(-) correlation. It is possible to check similar correlation statistically the area of sea surface temperature with sea surface temperature in the Pacific. Forecasting possibility of the future drought make propose using sea surface temperature.

County-Based Vulnerability Evaluation to Agricultural Drought Using Principal Component Analysis - The case of Gyeonggi-do - (주성분 분석법을 이용한 시군단위별 농업가뭄에 대한 취약성 분석에 관한 연구 - 경기도를 중심으로 -)

  • Jang, Min-Won
    • Journal of Korean Society of Rural Planning
    • /
    • v.12 no.1 s.30
    • /
    • pp.37-48
    • /
    • 2006
  • The objectives of this study were to develop an evaluation method of regional vulnerability to agricultural drought and to classify the vulnerability patterns. In order to test the method, 24 city or county areas of Gyeonggi-do were chose. First, statistic data and digital maps referred for agricultural drought were defined, and the input data of 31 items were set up from 5 categories: land use factor, water resource factor, climate factor, topographic and soil factor, and agricultural production foundation factor. Second, for simplification of the factors, principal component analysis was carried out, and eventually 4 principal components which explain about 80.8% of total variance were extracted. Each of the principal components was explained into the vulnerability components of scale factor, geographical factor, weather factor and agricultural production foundation factor. Next, DVIP (Drought Vulnerability Index for Paddy), was calculated using factor scores from principal components. Last, by means of statistical cluster analysis on the DVIP, the study area was classified as 5 patterns from A to E. The cluster A corresponds to the area where the agricultural industry is insignificant and the agricultural foundation is little equipped, and the cluster B includes typical agricultural areas where the cultivation areas are large but irrigation facilities are still insufficient. As for the cluster C, the corresponding areas are vulnerable to the climate change, and the D cluster applies to the area with extensive forests and high elevation farmlands. The last cluster I indicates the areas where the farmlands are small but most of them are irrigated as much.

Face Recognition by Using Zero Mean and Principal Component Anaysis (영 평균과 주요성분분석에 의한 얼굴인식)

  • Cho, Yong-Hyun
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.8 no.4
    • /
    • pp.221-226
    • /
    • 2005
  • This paper presents a hybrid method for recognizing the faces by using zero mean and principal component analysis. Zero mean is applied to reduce the 1st order statistics to data nonlinearities. PCA is also used to derive an orthonormal basis which directly leads to dimensionality reduction, and possibly to feature extraction of face image. The proposed method has been applied to the problems for recognizing the 20 face images(10 persons * 2 scenes) of 324*243 pixels from Yale face database. The 3 distances such as city-block, Euclidean, negative angle are used as measures when match the probe images to the nearest gallery images. The experimental results show that the proposed method has a superior recognition performances(speed, rate). The negative angle has been relatively achieved more an accurate similarity than city-block or Euclidean.

  • PDF

International Inflation Synchronization and Implications

  • CHON, SORA
    • KDI Journal of Economic Policy
    • /
    • v.42 no.2
    • /
    • pp.57-84
    • /
    • 2020
  • This study analyzes global inflation synchronization and derives policy implications for the Korean economy. Unlike previous studies that assume a single global inflation factor, this study investigates if inflation in Korea can be explained further by other global inflation factors. Our principal component analysis provides three principal components for global inflation that are linked to the Korea inflation rate - the first component is closely related to OECD inflation, and the second and third components reflect China's inflation. This study empirically demonstrates via in-sample fitting and out-of-sample forecasting that the three principal components of global inflation play a significant role in explaining and predicting Korean inflation in the short-term, while their role is limited in the mid-term. Domestic macroeconomic variables are found to be more important for the mid-term movements of the Korean inflation rate. The empirical results here suggest that the Bank of Korea should focus more on domestic economic conditions than on global inflation when implementing monetary policy because global factors are likely to be already reflected in domestic macro-variables in the mid-term.

Face Recognition Based on PCA on Wavelet Subband of Average-Half-Face

  • Satone, M.P.;Kharate, G.K.
    • Journal of Information Processing Systems
    • /
    • v.8 no.3
    • /
    • pp.483-494
    • /
    • 2012
  • Many recent events, such as terrorist attacks, exposed defects in most sophisticated security systems. Therefore, it is necessary to improve security data systems based on the body or behavioral characteristics, often called biometrics. Together with the growing interest in the development of human and computer interface and biometric identification, human face recognition has become an active research area. Face recognition appears to offer several advantages over other biometric methods. Nowadays, Principal Component Analysis (PCA) has been widely adopted for the face recognition algorithm. Yet still, PCA has limitations such as poor discriminatory power and large computational load. This paper proposes a novel algorithm for face recognition using a mid band frequency component of partial information which is used for PCA representation. Because the human face has even symmetry, half of a face is sufficient for face recognition. This partial information saves storage and computation time. In comparison with the traditional use of PCA, the proposed method gives better recognition accuracy and discriminatory power. Furthermore, the proposed method reduces the computational load and storage significantly.