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ABSTRACT

Shin, Tarumi and Tanaka(1989) discussed a method of sensitivity analysis in
principal component regression(PCR) based on an influence function derived by
Tanaka(1988). The present paper is its continuation. In this paper we first consider
two new influence measures, then apply the proposed method to various data sets

and discuss some properties of sensitivity analysis in PCR.

1. Introduction

We consider an ordinary regression model
y=180+ XB +¢, e~ N(0,0%I), (1)

where y is an (n x 1) vector of the dependent variable, 1 is an (n x 1) vector whose
elements are all 1’s, X is an (n x p) matrix of the independent variables and ¢ is an
(n x 1) vector of error terms. Denote a mean vector and a covariance matrix by u
and ® with subscripts indicating the related variables, ¢.e., u; = the mean vector
of x, ®,, = the covariance matrix of x, ®,, = the covariance matrix between x
and y, etc.

It is well-known that, if we use the method of least squares to estimate (3,
BT), the estimate becomes poor when the matrix X TX is nearly singular. This
phenomenon is called multicollinearity. Principal component regression(PCR) is one
of the methods developed to avoid this difficulty. Shin, Tarumi and Tanaka(1989)

considered a method of sénsitivity analysis in PCR based on an influence function
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derived by Tanaka(1988). The present paper is its continuation. In Section 2 two
new influence measures are derived. In Section 3 we apply the proposed method to

various data sets and discuss some properties of sensitivity analysis in PCR.
2. Sensitivity Analysis

We study the influence of a small change of data on the standardized regression
coefficient vector #* obtained by PCR. The influence function I(x,y; 8*), which we

simply denote by 8*V), is given as follows.

BV =(ViAT V)W (@20) 57 @ay + VATV {(aa) 7 } 1 By
+ VATV (@) 8L (2)

Yy’

where D implies "diagonal”, A; and A, are the diagonal matrices of the eigenvalues
of interest and the remaining eigenvalues, respectively, and V; and V, are the ma-
trices of the associated eigenvectors. The quantity (VA7 V7)) in the right hand

side can be calculated as follows(see Tanaka,1989).

q q
VATV == ) ANV TR vivevy (3)
s=1 r=1
q P i
+ Z Z /\s—l()‘s - /\r)-l[VsTF(zlx)Vrl(VsVZ + VrvsT)s
s=1r=¢q+1

where I' is a correlation matrix. Notice that the right hand side tends to be large,
when there is an eigenvalue A, such that A; = 0 or there is a pair of eigenvalues
(As, Ar) such that Ay — A, = 0 where A, belongs to the set of the eigenvalues of
interest and A, to the set of the remaining eigenvalues.

(1) .
2> on the error variance

As new influence measures we consider the influence &
5% and the generalized variance det(V(3*)) of the estimated 3*.

The influence on & is evaluated by

52" = —(n - 1)(5%1-) — 5%, (4)

‘where s? and S?i) are the estimated o2 based on the whole sample and the sample

without the ¢-th observation (the quantities with the subscript (i) indicates the
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estimate without the ¢ — th observation). The estimates s? and S?i) are calculated
by
- * H% T * A%
P=(n-p-1)"Hy - X*B") (y - X*p"),

3( ) = =(n-p-2)" ( X( ﬂ(l)) (Y- — X(*z')B(*i))a (9)

where the subscript (—i:) simply indicates the omission of the i-th observation.
The elements of X}y are calculated using the following relations between the two
means and the two variances for the whole sample and the sample without the :-th
observation.

2 = (n— 17" (nz - zi),
Si(i) = (n = 2)7}((n - 1)s2 — n(n — 1)(z; — 2)*)

To get 52" exactly we need to compute [;(*i) for i=1 to n by solving the eigenvalue
problems n times. It requires high computing cost. here, instead of computing

exact ﬂ?i) we use a linear approximation based on the perturbation expansion as

ﬁz(i) — ﬁ* _ (n _ 1)—13*(1)’
compute an approximate value 37 5( ) for b%) by (5) with B(*l-) replaced by ﬁFi)’ and

finally obtain an approximate ¢? = by (4) with S%i) replaced by §?i).
The influence on det(V(5*)) is evaluated by the influence function

det(V(AN" = [det(V(F NV v, (6)

where W
2 @

v = =iy v1T>+—<v1A YT

The first term of the right hand side of the last equation is approximated by

using (4), and the second term can be obtained from (3).
3. Numerical Investigation

To investigate the properties of our procedure we applied our method of sensi-

tivity analysis to the data sets shown in Table 1.



4 Jae-Kyoung Shin, Tomoyuki Tarumi and Yutaka Tanaka

Table 1. The data sets of example

Data set sample variables condition source
size n p number of data
Longley 16 7 12114.158  Longley(1967)

Hill 15 7 119.685  Hill(1977)
Equal Educational 70 4 370.853 Chatterjee and
Opportunity(EEO) Price(1977)

Rat 19 4 242.035 Weisberg(1980)

Coleman 20 6 41.149 Rousseeuw and

Leroy(1987)

Heart 12 3 50.401 Rousseeuw and
Catheterization Leroy(1987)

Aircraft 23 3] 37.799 Rousseeuw and

_ ' Leroy(1987)
Wood Specific 20 6 30.633 Rousseeuw and
Gravity Leroy(1987)

In PCR, we first apply principal component analysis(PCA) based on the cor-
relation matrix to the independent variables, then we select some principal compo-
nents(PCs) and take regression on the PCs. In sensitivity analysis we compute the
empirical influence curve B*(1) based on the proposed procedure and summarize it
into scalar valued measure [|3*(V||, D and newly proposed 52" and [det(V(B*))](l).

The aims of this numerical study are :

1) to investigate the usefulness of the empirical influence curve(EIC) B+
based on the proposed procedure, under different conditions of selecting
PCs, by checking its relationship with the sample influence curves(SIC),

2) to investigate how the result of sensitivity analysis changes when the PCs
selected change,

and

3) to investigate the properties of the observations which are found to be

influential with by ||B*(1)||, D, &2%1') and [det(v(/é*))](l)-

The scatter diagrams in Fig. 1 are some examples of the scatter diagrams of
EIC versus SIC, under some different conditions of selecting PCs. It is clear that
most of the points are located near the straight line ST C = EIC. We can observe
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the similar tendencies in the other cases, i.e. other variables and/or other data sets.
From this we may conclude that the quantity £/C can be used practically instead

of SIC under various conditions of selecting PCs.
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Fig.1 Scatter Diagrams of EIC(horizontal) vs. SIC(vertical) for ﬂf(])

(a)heart catheterization data(pc=1), (b)EEO(pc=1), (c)EEO(pc=2)

Next, we investigate how the results of sensitivity analysis change when the
selected PCs change. The index plots of ||3*()|| are shown in Fig. 2 when the
selected PCs change in Hill’s data. Table 2 shows influential observations found
with ||3*®)|| when the PCs corresponding to the largest ¢ eigenvalues are selected.
We can see that different observations are found to be influential when the selected

PCs are different.
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Fig. 2 Index Plots of {|3*(V|| (Hill’ data):
(a) pe=1, (b) pc=2, (c) pc=3, (d) pc=4, (e) pc=5, (f) pc=6.
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Table 2 Cumulative proportion, coefficient of determination and influential observations found

with ”ﬂ*(l) H when the PCs corresponding to the largest ¢ eigenvalues are selected.

Data set PC eigenvalue cumulative ~ coefficient of  influential observations
(q) proportion determination measures with ”/B*(l)“
1 4.60338 0.76723 0.91425 3
2 1.17534 0.96312 0.92888 3
3 0.20343 0.99702 0.98597 1
Longley 4 0.01493 0.99951 0.98612 16
5 0.00255 0.99994 0.99397 10
6 0.00038 1.00000 0.99547 5(0OLS)
1 3.79999 0.63333 0.66081 8, 15
2 1.05511 0.80918 0.69471 8,12
3 0.62357 0.91311 0.73001 8
Hill 4 0.42661 0.98421 0.77777 8
5 0.06298 0.99471 0.78391 6, 8
6 0.03175 1.00000 0.86457 15(0OLS)
Equal Educational 1 2.95199 0.98400 0.18423 28
opportunity(EEO) 2 0.04005 0.99735 0.19025 35
3 0.00796 1.00000 0.20626 35(0OLS)
1 2.35258 0.78420 0.04662 3
Rat 2 0.63770 0.99676 0.05170 5
3 0.00972 1.00000 0.36390 5(OLS)
1 2.83681 0.56736 0.72559 10, 11
2 11.39508 0.84638 0.72587 10
Coleman 3 0.49664 0.94571 0.78730 10
4 0.20253 0.98621 0.90212 15, 18
5 0.06894 1.00000 0.90631 18(OLS)
Heart 1 1.96109 0.98055 0.82359 8
Catheterization 2 0.03891 1.00000 0.82536 6, 8(OLS)
1 2.67464 0.66866 0.64415 22
Aircraft 2 0.87665 0.88782 0.65524 22
3 0.37795 0.98231 0.68149 22
4 0.07076 1.00000 0.88364 22(0OLS)
1 2.73984 0.54797 0.51896 19
Wood Specific 2 1.03632 0.75523 0.58532 11
Gravity 3 0.70911 0.89705 0.58760 7,9, 11
4 0.42529 0.98211 0.74226 11
5 0.08944 1.00000 0.80840 11(OLS)
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Finally, we investigate the properties of the observations which are found to be

influential with by [|3*@)], D*, 52" and [det(V(B*))](l). Fig. 3 shows the index
plots of [|3*(M)||, D*, 52" and [V(,@fyl)](l) in Hill’s data.
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Fig. 3 Index plots of ||3*1)|, D*, [V(B{‘,l)](l) and 52" (Hill’s data) :
P ' A (1) o1
(a) 1B*@], (b) D*, (&) V(A1) 5 (d) 6%

From this Fig. 3, we can see that the patterns of influence are very similar

among four measures.
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