• Title/Summary/Keyword: the principal component analysis

Search Result 2,531, Processing Time 0.032 seconds

Comparison of hydrochemical informations of groundwater obtained from two different underground storage systems

  • Lee, Jeonghoon;Kim, Jun-Mo;Chang, Ho-Wan
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.04a
    • /
    • pp.110-113
    • /
    • 2002
  • Statistical- based, principal component analysis (PCA) was applied to chemical data from two underground storage systems containing LPG to assess the usefulness of such technique at the initial stage (Pyeongtaek) or middle stage (Ulsan) of hydrochemical studies. For the first case, both natural and anthropogenic contamination characterize regional groundwater. Saline water buffered by Namyang lake affects as a natural factor, whereas cement grouting influence as an artificial factor. For the second study area, contaminations due to operation of LPG caverns, such as disinfection activity and cement grouting effect, deteriorate groundwater quality. This study indicates that principal component analysis would be particularly useful for summarizing large data set for the purpose of subsurface characterization, assessing their vulnerability to contamination and protecting recharge zones.

  • PDF

Evaluation of Slope Condition using Principal Component Analysis (주성분분석법을 이용한 사면 상태 평가)

  • Jung, Soo-Jung;Kim, Tae-Hyung;Kang, Ki-Min;Lee, Young-Jun
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.416-422
    • /
    • 2010
  • Estimating condition of geotechnical structures are difficult because of nonlinear time dependency and seasonal effects. Measuring data of structure failure is highly variable in time and space, and a unique approach cannot be defined to model structure movements. Characteristics of movements are obtained by using a statistical method called Principal Component Analysis(PCA). The PCA is a non-parametric method to separate unknown, statistically uncorrelated source processes from observed mixed processes. Instead, since the "best" mathematical relationship is estimated for given data sets of the input and output measured from target systems. As a consequence, this method is advantageous in modeling systems whose geomechanical properties are unknown or difficult to be measured.

  • PDF

A Study on Classification of Micro-Cracks in Silicon Wafer Through the Fusion of Principal Component Analysis and Neural Network (주성분분석과 신경회로망의 융합을 통한 실리콘 웨이퍼의 마이크로 크랙 분류에 관한 연구)

  • Seo, Hyoung Jun;Kim, Gyung Bum
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.5
    • /
    • pp.463-470
    • /
    • 2015
  • Solar cell is typical representative of renewable green energy. Silicon wafer contributes about 66 percent to its cost structure. In its manufacturing, micro-cracks are often occurred due to manufacturing process such as wire sawing, grinding and cleaning. Their detection and classification are important to process feedback information. In this paper, a classification method of micro-cracks is proposed, based on the fusion of principal component analysis(PCA) and neural network. The proposed method shows that it gives higher results than single application of two methods, in terms of shape and size classification of micro-cracks.

Projection spectral analysis: A unified approach to PCA and ICA with incremental learning

  • Kang, Hoon;Lee, Hyun Su
    • ETRI Journal
    • /
    • v.40 no.5
    • /
    • pp.634-642
    • /
    • 2018
  • Projection spectral analysis is investigated and refined in this paper, in order to unify principal component analysis and independent component analysis. Singular value decomposition and spectral theorems are applied to nonsymmetric correlation or covariance matrices with multiplicities or singularities, where projections and nilpotents are obtained. Therefore, the suggested approach not only utilizes a sum-product of orthogonal projection operators and real distinct eigenvalues for squared singular values, but also reduces the dimension of correlation or covariance if there are multiple zero eigenvalues. Moreover, incremental learning strategies of projection spectral analysis are also suggested to improve the performance.

A Study on the Principal Component Analysis of Anthropometric Data (인체계측치(人體計測値)의 주성분분석(主成分分析)에 관한 연구(硏究))

  • Lee, Sang-Do;Jeong, Jung-Hui;Kim, Geuk-Bae
    • Journal of the Ergonomics Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.3-11
    • /
    • 1983
  • Anthropometric data is most basic materials in the all studies related with it. Therefore, in anthropometric data, not only consideration of the state of variance, but more various analysis is needed. This study selected the 13 parts that properly show a whole characteristics of human body and, anthropometric data were obtained through the actual measurements for male and female workers who were engaged in production factory. And, to interpret anthropometric data, principal component analysis of multivariate analysis methods was applied.

  • PDF

Classification Technique for Ultrasonic Weld Inspection Signals using a Neural Network based on 2-dimensional fourier Transform and Principle Component Analysis (2차원 푸리에변환과 주성분분석을 기반한 초음파 용접검사의 신호분류기법)

  • Kim, Jae-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.6
    • /
    • pp.590-596
    • /
    • 2004
  • Neural network-based signal classification systems are increasingly used in the analysis of large volumes of data obtained in NDE applications. Ultrasonic inspection methods on the other hand are commonly used in the nondestructive evaluation of welds to detect flaws. An important characteristic of ultrasonic inspection is the ability to identify the type of discontinuity that gives rise to a peculiar signal. Standard techniques rely on differences in individual A-scans to classify the signals. This paper proposes an ultrasonic signal classification technique based on the information tying in the neighboring signals. The approach is based on a 2-dimensional Fourier transform and the principal component analysis to generate a reduced dimensional feature vector for classification. Results of applying the technique to data obtained from the inspection of actual steel welds are presented.

A dimensional reduction method in cluster analysis for multidimensional data: principal component analysis and factor analysis comparison (다차원 데이터의 군집분석을 위한 차원축소 방법: 주성분분석 및 요인분석 비교)

  • Hong, Jun-Ho;Oh, Min-Ji;Cho, Yong-Been;Lee, Kyung-Hee;Cho, Wan-Sup
    • The Journal of Bigdata
    • /
    • v.5 no.2
    • /
    • pp.135-143
    • /
    • 2020
  • This paper proposes a pre-processing method and a dimensional reduction method in the analysis of shopping carts where there are many correlations between variables when dividing the types of consumers in the agri-food consumer panel data. Cluster analysis is a widely used method for dividing observational objects into several clusters in multivariate data. However, cluster analysis through dimensional reduction may be more effective when several variables are related. In this paper, the food consumption data surveyed of 1,987 households was clustered using the K-means method, and 17 variables were re-selected to divide it into the clusters. Principal component analysis and factor analysis were compared as the solution for multicollinearity problems and as the way to reduce dimensions for clustering. In this study, both principal component analysis and factor analysis reduced the dataset into two dimensions. Although the principal component analysis divided the dataset into three clusters, it did not seem that the difference among the characteristics of the cluster appeared well. However, the characteristics of the clusters in the consumption pattern were well distinguished under the factor analysis method.

Comparison of Significant Term Extraction Based on the Number of Selected Principal Components (주성분 보유수에 따른 중요 용어 추출의 비교)

  • Lee Chang-Beom;Ock Cheol-Young;Park Hyuk-Ro
    • The KIPS Transactions:PartB
    • /
    • v.13B no.3 s.106
    • /
    • pp.329-336
    • /
    • 2006
  • In this paper, we propose a method of significant term extraction within a document. The technique used is Principal Component Analysis(PCA) which is one of the multivariate analysis methods. PCA can sufficiently use term-term relationships within a document by term-term correlations. We use a correlation matrix instead of a covariance matrix between terms for performing PCA. We also try to find out thresholds of both the number of components to be selected and correlation coefficients between selected components and terms. The experimental results on 283 Korean newspaper articles show that the condition of the first six components with correlation coefficients of |0.4| is the best for extracting sentence based on the significant selected terms.

Probabilistic penalized principal component analysis

  • Park, Chongsun;Wang, Morgan C.;Mo, Eun Bi
    • Communications for Statistical Applications and Methods
    • /
    • v.24 no.2
    • /
    • pp.143-154
    • /
    • 2017
  • A variable selection method based on probabilistic principal component analysis (PCA) using penalized likelihood method is proposed. The proposed method is a two-step variable reduction method. The first step is based on the probabilistic principal component idea to identify principle components. The penalty function is used to identify important variables in each component. We then build a model on the original data space instead of building on the rotated data space through latent variables (principal components) because the proposed method achieves the goal of dimension reduction through identifying important observed variables. Consequently, the proposed method is of more practical use. The proposed estimators perform as the oracle procedure and are root-n consistent with a proper choice of regularization parameters. The proposed method can be successfully applied to high-dimensional PCA problems with a relatively large portion of irrelevant variables included in the data set. It is straightforward to extend our likelihood method in handling problems with missing observations using EM algorithms. Further, it could be effectively applied in cases where some data vectors exhibit one or more missing values at random.

A Study on the Shapes of the Neck and the Shoulder in Dressmaking; young wonen age group (의복원형설계를 위한 성인여성 두.견부의 형태분류 -20대 여성을 중심으로-)

  • 김희숙
    • Journal of the Korean Home Economics Association
    • /
    • v.36 no.12
    • /
    • pp.43-54
    • /
    • 1998
  • From the viewpoint of clothing construction, it is necessary to grasp exactly the shapes of the neck and the shouder, such as the line of the neck base, the neck gradient, the shoulder gradient, the shape of the scapular, and the shape of the breast. In this report, factor analysis was applied to 39 items of neck & shoulder level measurements, including stature, weight, but grith, waist girth, to demonstrate the most relevant measurements for collar and bodice pattern designing, and to classify the neck and shoulder level shapes. The subjects investigated were 126 women of the age 20-29. The main results are follows : 1. For factors of body form were extracted by the factor analysis. The 1st principal component can be interpreted as "size" component, the 2nd-3th principal component is "shape" component relating to neck and shoulder level, and the 4th principal component is "shoulder shape" component. 2. With regard to factor loadings, we were able to extract the most relevant measurements for collar and bodice pattern designing. M16, M22, S26, S30, S34, S35, S36, C37, C38, C39.

  • PDF