• Title/Summary/Keyword: thalweg

Search Result 20, Processing Time 0.027 seconds

Variations of Flow Thalweg Alignment and Separation Region around a Groyne (단일수제 설치에 따른 흐름중심선과 흐름분리영역의 변화)

  • Yeo, Hong-Koo;Roh, Young-Sin;Kang, Joon-Gu;Kim, Sung-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.4 s.165
    • /
    • pp.313-320
    • /
    • 2006
  • In this study, hydraulic characteristics of thalweg line occurred near the single groyne and recirculation zone around downstream of the structure were discussed from the experiments which conducted in fixed flat-bed channel flume. The thalweg line is the stream line where the maximum velocity occurs and flow separation appeared at the tip of groyne changes the thalweg alignment. In this study, the variations in flow fields which were caused by different length and permeability of groyne were measured by LSPIV(Large Scale Particle Image Velocimetry), and also the characteristics of thalweg line and separation area were analyzed. From these results, it is found that length to thalweg line from the channel wall $T_{CL}$ and height of separation area $S_h$ vary the channel width up to 75%, 50% in the change of length and permeability of groyne, however the Froude number does not affect on $T_{CL}$ and $S_h$. Velocity along the thalweg $U_{CL}$ Increased by twice the mean velocity, and the maximum velocity occurred in downstream where the distance $5{\sim}6$ times of groyne length away from the groyne, which does not get affected by length and permeability of groyne and Froude number.

Experimental Study on Flow Characteristic of L-type Groyne (L형 수제주변 흐름특성 변화에 대한 실험연구)

  • Kang, Joon-Gu;Yeo, Hong-Koo;Kim, Sung-Jung
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.7
    • /
    • pp.653-667
    • /
    • 2008
  • The hydraulic model test for the L-type Groynes with "ㄱ" shape were conducted to analyze flow characteristics around these groynes. The results of model tests should be used for the fundamental information to design the L-type Groyne constructed in the field. Main hydraulic factors such as the velocity and thalweg line changes in main channel and separation area were analyzed in this study. The thalweg line is stream line where the maximum velocity occurs, and the separation area is a boundary of main flow and recirculation zone. Model tests with 5 different arm-lengths of the L-type Groynes were conducted changing the velocity. The LSPIV(Large Scale Particle Image Velocimetry) technique was used to measure and analyze the flow variation around the L-type Groynes. The velocity in main channel was increased 1.5 times and there was no effects of different groyne arm-length on the velocity changes. The width of thalweg lines $(T_{CL})$ was changed to $55{\sim}58%$ of chanel width, and the Froude number did not affect on the thalweg line $(T_{CL})$ and separation line $(S_h)$ changes.

New Concept of Average River Bed and General Trend of River Bed Change in the Nakdong River (새로운 평균하상 개념과 낙동강의 하상 변동 경향성 분석)

  • Yu, Kwon-Kyu
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.486-494
    • /
    • 2011
  • River bed change due to various factors in watershed and/or river environment would one of the most important issues in river management. To judge whether the river bed was aggrading or degrading, normally we use the change in thalweg or average bed, calculated using the design flood of the river. The present study is to figure out the problems of the existing methods and to propose a new concept of average river bed using annual maximum flood. To evaluate the new method, it was applied to the Nakdong River. We use the river bed data surveyed in 1983, 1993, and 2005. The results showed that there were no significant river bed change during 1983 and 1993, while the river bed was degraded significantly during 1993 and 2005. In the latter period, the river had severe degradations, 2~3 m in average sense and 5 m for the maximum in the middle reach(120~200 km from river mouth), and 1~2 m in average in the upper reach(200~240 km from river mouth). For the upstream reach of the confluence of the Naesung River(about 240 km from river mouth), most of the river bed change seemed to be only local phenomena. The main cause of the river bed change in the Nakdong River seems to be massive gravel mining in the middle reach of the river.

An Experimental Study on Flow Characteristic Around Inclined Crest Groyne (경사수제 주변 흐름특성 분석에 관한 실험연구)

  • Kang, Joon-Gu;Kim, Sung-Jung;Yeo, Hong-Koo
    • Journal of Korea Water Resources Association
    • /
    • v.42 no.9
    • /
    • pp.715-724
    • /
    • 2009
  • In case of inclined crest groyne, flow constriction with water is different. Therefore, it is proper to apply to narrow channel or there is a risk of overflow with water level rising caused by installation of groynes. This study were conducted experiments on inclined crest groyne. Main factors of inclined crest groyne are angles of crests slope and changes of water level. Velocity profile around groyne was measured by LSPIV (Large Scale Particle Image Velocimetry). Flow fields around groyne were analyzed focused on main channel and recirculation area. From the results, Thalweg change has little an effect on rate length and height of recirculation rises on increasing rate length. Length of recirculation area was about 12$\sim$16 times of rate length of groyne. Maximum velocity in main channel area was measured about 1.45$\sim$2.1 times of approach velocity and has little an effect on crest angle of groyne. Back water velocity recirculation area was decreased on approach velocity. This result presents to make stable flow to bank protection.

Analysis of Long-Term Riverbed-Level and Flood Stage Variation due to Water Gate Operation of Multi-functional Weirs at Geum River (다기능보의 수문운영에 따른 금강의 장기하상변동 및 홍수위변화 분석)

  • Jeong, Anchul;Jung, Kwansue
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.379-391
    • /
    • 2015
  • Multi-functional weirs has been installed in four rivers are hydraulic structures across the river. The structures were divided into movable and fixed weirs. Hence, riverbed-level variation and sediment transport can be varied due to water gate operation. In this study, the long-term riverbed-level variation of Geum river basin due to water gate operation of multi-functional weirs was studied. Result of this study shows that the variation of thalweg elevation was greater than the variation of annual average riverbed elevation due to multi-functional weirs construction and water gate operation. Maximum riverbed degradation of thalweg elevation that occurred was 2.79m and riverbed aggradation was 1.90m. Maximum riverbed degradation of the annual average riverbed elevation that occurred was 2.16m and riverbed aggradation was 1.24m. Analysis result of flood stage by the variation of riverbed-level shows that flood stages were increased in majorities area. The maximum increase in the value of flood stage was 2.23m. For this reason, flood stages can be greater than the freeboard of the levees. Therefore, we should consider the water gate operation of multi-functional weirs when planning and managing sediment in the river. We are expecting to use the result of this study in river planning for river management and selecting the river regime.

Characteristics of Steep Shingi Gully with Channelized Debris Flows (계곡형 토석류가 발생한 급경사 신기 계곡의 특성)

  • Park, Sang Doeg;Kim, Yong Hyun;Ham, Gwang Hyun;Son, Sang Jin;Na, Raksmey;Kim, Nam Jin
    • Journal of The Geomorphological Association of Korea
    • /
    • v.28 no.3
    • /
    • pp.13-26
    • /
    • 2021
  • In mountain gully, channelized debris flow is an important phenomenon in the process of topographical change. Social infrastructure as roads may be damaged by channelized debris flows, but there has been little information about their occurrence and movement to prepare for the risk of the debris flow. Most of the channelized debris flows occur during heavy rains in mountainous valleys that are difficult to access, so there are not many field data. In this study, the topographical characteristics of the catchment, the rainfall and runoff related to the debris flow, the sedimentary pattern and the cross-sectional change of the channel bed, and the underflow velocity of the gravel bed have been investigated and analyzed in the Singi gully where the channelized debris flows occurred. In the catchment, there was almost no sediment runoff because the vegetation combine with the debris landforms and covered the surface. Therefore, the obvious cause of the channelized debris flows is the collapse of the slope and bed of the gully. Even if the gravel, cobbles, and boulders of the channel bed were lost by debris flow, the thalweg change due to debris flow may not be significant because they are supplied from the gully side slope normally. After the gabion structures were installed, the debris flow increased the thalweg change, bed erosion and side slope of the gully. Various sedimentary structures in the gully were classified according to the factors supporting the sedimentation. The hypsometric curve of the gully reflects the debris landforms and vegetation characteristics of the watershed and the sediment runoff due to debris flow, etc. The relationship between the flow velocity and the hydraulic gradient was non-linear under the condition that the porous medium with gully bed gravels is saturated with water. These results may be used as basic data for channelized debris flow research.

Determination of the Optimal Sediment Discharge Formula for Hyeongsan River Using GSTARS (GSTARS모형을 이용한 형산강의 최적 유사량공식 결정)

  • Ahn, Jung Min;Lyu, Siwan;Lee, Nam Joo
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1B
    • /
    • pp.1-7
    • /
    • 2012
  • Quasi-two dimensional numerical model (GSTARS) was applied to determine the optimal sediment discharge formula for simulating the sedimentologic characteristics of Hyeongsan river. The field measurements have been conducted to obtain the data, such as sediment discharge, bed material, and channel geometry, for model calibration and verification. The sediment discharge formulas, which have been generally used, have been assessed according to the average error, relative error, RMSE, RRMSE, discrepancy ratio and Nash-Sutcliffe efficiency coefficient for bed changes along the thalweg. From the results, Laursen formula(1958) shows the best performance to simulate the long-term bed change of Hyeongsan river.

Mechanism for Bank Erosion and Local Scouring in Estuary of the Hangang River

  • Lee, Samhee;Han, Hyeongjun;Choo, Jeongho
    • Journal of Wetlands Research
    • /
    • v.16 no.4
    • /
    • pp.453-462
    • /
    • 2014
  • The levee and bridge pier in estuary of the Hangang River are exposed in a dangerous condition due to bank erosion and local scouring occurred since the summer season in 2011. At first, it is presumed that the high sandbar formed in river channel of the study area was an important element in the occurrence of bank erosion and local scouring. It can be presumed that the record-breaking depth of freezing due to cold wave for the long term during the winter season between 2010 and 2011 as well as the heavy intensive rainfall of 2011 had a decisive effect on the first damage of A section. The second damage of B section mainly occurred around the bridge pier constructed on the high water channel before it was washed away during the winter season between 2011 and 2012. It is considered that the second damage was caused by ice formation and ice floes.

Thalweg Change According to Outer-bank Distance of the Submerged Vane in Curved Channel (날개형 수제의 이격거리에 따른 개수로 만곡부의 유심선 변화)

  • Ham, Gwang Hyeon;Jeon, Woo Sung;Sim, Young Ju;Park, Sang Deog
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.261-261
    • /
    • 2021
  • 자연하천은 직선하천보다 만곡하천으로 존재하는 경우가 많다. 하천의 만곡부에서 2차류 흐름과 나선형 흐름, 원심력이 수충부와 외측제방에 작용하여 하상에 국부적인 세굴이 발생한다. 세굴이 발생하게 되면 수충부나 외측제방에 붕괴나 피해가 일어날 수 있다. 세굴의 피해를 줄이고 만곡부유로를 조정하기 위해 날개형 수제를 설치할 수 있다. 날개형 수제를 설치한 하상은 수제의 두께, 길이, 높이, 간격, 위치, 배열 등에 따라 다르게 반응한다. 본 연구에서는 만곡 개수로에 잠긴 날개형 수제를 설치할 때 만곡 외측에서 수제 열까지의 거리가 만곡부의 유심선 변화에 미치는 영향을 이동상 개수로 수리실험으로 조사하였다. 이동상 수리실험은 폭 1.16 m, 깊이 1 m, 길이 24 m인 90° 만곡 개수로에 d50이 3.3mm인 잔자갈을 깔아 하상경사 1/300로 정리한 후 수제를 설치하는 순서로 이루어졌다. 수제는 폭 20mm, 길이 70mm의 직사각형 단면 목재로 제작하여 설치하였고, 실험별 이격거리는 외측 제방으로부터 8.4 cm, 14 cm, 19.6 cm로 하였다. 실험유량은 140l/s로 3시간 동안 흘린 뒤 하상측정장치를 이용하여 주요 횡단면별 하상고를 측정하였다. 측정한 데이터를 이용하여 최심하상고의 크기와 위치, 유심선의 변화 등을 분석하였다.

  • PDF

Restoration Modeling Analysis for Abandoned Channels of the Mangyeong River

  • Kim, Jae-Hoon;Julien, Pierre Y.;Ji, Un;Kang, Joon-Gu
    • Journal of Environmental Science International
    • /
    • v.20 no.5
    • /
    • pp.555-564
    • /
    • 2011
  • This study examines the potential restoration of abandoned channels of the Mangyeong River in South Korea. To analyze the morphological changes and equilibrium conditions, a flow duration analysis was performed to obtain the discharge of 255 m3/s with a recurrence interval of 1.5 year. It is a gravel-bed stream with a median bed diameter of 36 mm. The reach-averaged results using HEC-RAS showed that the top width is 244 m, the mean flow depth is 1.11 m, the width/depth ratio is very high at 277, the channel velocity is 1.18 m/s, and the Froude number is also high at 0.42. The hydraulic parameters vary in the vicinity of the three sills which control the bed elevation. The total sediment load is 6,500 tons per day and the equivalent sediment concentration is 240 mg/l. The Engelund-Hansen method was closer to the field measurements than any other method. The bed material coarser than 33 mm will not move. The methods of Julien-Wargadalam and Lacey gave an equilibrium channel width of 83 m and 77 m respectively, which demonstrates that the Mangyeong River is currently very wide and shallow. The planform geometry for the Mangyeong River is definitely straight with a sinuosity as low as 1.03. The thalweg and mean bed elevation profiles were analyzed using field measurements in 1976, 1993 and 2009. The measured profiles indicated that the channel has degraded about 2 m since 1976. The coarse gravel material and large width-depth ratio increase the stability of the bed material in this reach.