DOI QR코드

DOI QR Code

Determination of the Optimal Sediment Discharge Formula for Hyeongsan River Using GSTARS

GSTARS모형을 이용한 형산강의 최적 유사량공식 결정

  • 안정민 (한국수자원공사 물관리센터) ;
  • 류시완 (창원대학교 공과대학 토목공학과) ;
  • 이남주 (경성대학교 공과대학 토목공학과)
  • Received : 2010.11.18
  • Accepted : 2011.06.07
  • Published : 2012.02.29

Abstract

Quasi-two dimensional numerical model (GSTARS) was applied to determine the optimal sediment discharge formula for simulating the sedimentologic characteristics of Hyeongsan river. The field measurements have been conducted to obtain the data, such as sediment discharge, bed material, and channel geometry, for model calibration and verification. The sediment discharge formulas, which have been generally used, have been assessed according to the average error, relative error, RMSE, RRMSE, discrepancy ratio and Nash-Sutcliffe efficiency coefficient for bed changes along the thalweg. From the results, Laursen formula(1958) shows the best performance to simulate the long-term bed change of Hyeongsan river.

본 연구에서는 준 2차원 수치모형인 GSTARS를 이용하여 형산강의 하상변동모의에 적합한 최적 유사량공식을 산정하고자 하였다. 모형의 검보정을 위한 유사량, 하상재료 및 하천지형자료를 현장조사를 통해 취득하였다. 현재까지 널리 적용되는 유사량 공식들에 대하여 장기하상변동 모의결과의 실측치에 대한 평균오차, 상대오차, 평균제곱오차, 상대제곱근오차, 불일치율, 그리고 Nash-Sutcliffe 효율계수를 비교한 결과, Laursen(1958)공식이 형산강의 장기하상 변동을 모의하기 위한 가장 적합한 유사량공식으로 판단되었다.

Keywords

References

  1. 건설교통부(1979) 형산강 하천정비기본계획.
  2. 건설교통부(1993) 형산강 하천정비기본계획
  3. 서일원(1994) 하상변동 예측기법의 개발연구. 국제수문개발계획 (IHP)연구보고서.
  4. 안정민(2008a) 형산강의 장기하상변동 예측을 위한 수치모형의 적용. 공학석사학위논문, 창원대학교.
  5. 안정민, 류시완, 이남주, 여홍구(2008b) 형산강의 장기하상변동 예측을 위한 GSTARS와 HEC6의 적용. 수자원학회 학술발표회 논문집, 한국수자원학회, pp. 958-962.
  6. 안정민, 류시완, 이남주(2010) 형산강 수계 최적 유사량 공식 선정을 위한 연구. 한국수자원학회논문집, 한국수자원학회, 제43권 제11호, pp. 977-984. https://doi.org/10.3741/JKWRA.2010.43.11.977
  7. 우효섭(1993) 하천유사량 산정 기법의 개발. 국제수문개발계획 (IHP) 연구보고서.
  8. 우효섭(2001) 하천수리학, 청문각.
  9. 임창수(1999) 수치모형을 이용한 하상변동 연구. 한국수자원학회 논문집, 한국수자원학회, 제32권 제2호, pp. 131-142.
  10. 한국건설기술연구원(1991) 하상변동예측모형의 비교분석. 건기연 91-WR-112, 1991.
  11. 한국수자원공사(1997) 취수구 유사유입 저감기법 개발연구(2차년도).
  12. Ackers, P. and White, W.R. (1973) Sediment transport: a new approach and analysis, Journal of the hydraulics division, ASCE, Vol. 99, No. HY11, pp. 2041-2060.
  13. Cheong, T.S. and Seo, I.W. (2003) Parameter estimation of the transient storage model by routing method for river mixing processes. Water Resources Research, Vol. 39, pp. HWC 1-1-11.
  14. Dawdy and Vanoni (1986) Modeling alluvial channels, Water Resources Research, Vol. 22, No. 9.
  15. Duboys, P. (1879) Le rohne et les rivieres a lit affouilable, Annales des pont et chaussees, Series 5, Vol. 18.
  16. Engelund, F. and Hansen, E. (1967) A monorgraph on Sediment Transport in Alluvial Streams. Teknisk Vorlag, Copenhangen, Denmark.
  17. Laursen, E.M. (1958) The total sediment load of streams, Journal of the Hydraulics Division, ASCE, Vol. 84, No. HY1, pp. 1530-1531, 1530-1536.
  18. Madden, E.B. (1993) Modified Laursen Method for Estimating Bed-Material Sediment Load. Contract Report HL-93-3, Flood Control Channels Research Program, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS.
  19. Molinas, A. and Yang, C.T. (1986) Computer Program User's Manual for GSTARS. U.S. Department of Interior Bureau of Reclamation Engineering and Research Center.
  20. Yang, C.T. (1973) Incipient motion and sediment transport, Journal of the Hydraulics Division, ASCE, Vol. 99, No. HY10, pp. 1679-1704.