• 제목/요약/키워드: texture extraction

검색결과 267건 처리시간 0.023초

Three-dimensional Head Tracking Using Adaptive Local Binary Pattern in Depth Images

  • Kim, Joongrock;Yoon, Changyong
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제16권2호
    • /
    • pp.131-139
    • /
    • 2016
  • Recognition of human motions has become a main area of computer vision due to its potential human-computer interface (HCI) and surveillance. Among those existing recognition techniques for human motions, head detection and tracking is basis for all human motion recognitions. Various approaches have been tried to detect and trace the position of human head in two-dimensional (2D) images precisely. However, it is still a challenging problem because the human appearance is too changeable by pose, and images are affected by illumination change. To enhance the performance of head detection and tracking, the real-time three-dimensional (3D) data acquisition sensors such as time-of-flight and Kinect depth sensor are recently used. In this paper, we propose an effective feature extraction method, called adaptive local binary pattern (ALBP), for depth image based applications. Contrasting to well-known conventional local binary pattern (LBP), the proposed ALBP cannot only extract shape information without texture in depth images, but also is invariant distance change in range images. We apply the proposed ALBP for head detection and tracking in depth images to show its effectiveness and its usefulness.

Support Vector Machine 기반 지형분류 기법 (Terrain Cover Classification Technique Based on Support Vector Machine)

  • 성기열;박준성;유준
    • 전자공학회논문지SC
    • /
    • 제45권6호
    • /
    • pp.55-59
    • /
    • 2008
  • 야외 환경에서 무인차량의 자율주행에 있어서 효과적인 기동제어를 위해서는 장애물 탐지나 지형의 기하학적인 형상 정보외에 탐지된 장애물 및 지형 표면에 대한 재질 유형의 인식 및 분류 또한 중요한 요소이다. 영상 기반의 지표면 분류 알고리듬은 입력 영상에 대한 전처리, 특징추출, 분류 및 후처리의 절차로 수행된다. 본 논문에서는 컬러 CCD 카메라로부터 획득된 야외 지형영상에 대해 색상 및 질감 정보를 이용한 지형분류 기법을 제시한다. 전처리 단계에서 색공간 변환을 수행하고, 색상과 질감 정보를 이용하기 위해 웨이블릿 변환 특징을 사용하였으며, 분류기로서는 SVM(support vector machine)을 적용하였다. 야외 환경에서 획득된 실영상에 대한 실험을 통하여 제시된 알고리듬의 분류 성능을 평가하였으며, 제시된 알고리듬에 의한 효과적인 야지 지형분류의 가능성을 확인하였다.

CAD Scheme To Detect Brain Tumour In MR Images using Active Contour Models and Tree Classifiers

  • Helen, R.;Kamaraj, N.
    • Journal of Electrical Engineering and Technology
    • /
    • 제10권2호
    • /
    • pp.670-675
    • /
    • 2015
  • Medical imaging is one of the most powerful tools for gaining information about internal organs and tissues. It is a challenging task to develop sophisticated image analysis methods in order to improve the accuracy of diagnosis. The objective of this paper is to develop a Computer Aided Diagnostics (CAD) scheme for Brain Tumour detection from Magnetic Resonance Image (MRI) using active contour models and to investigate with several approaches for improving CAD performances. The problem in clinical medicine is the automatic detection of brain Tumours with maximum accuracy and in less time. This work involves the following steps: i) Segmentation performed by Fuzzy Clustering with Level Set Method (FCMLSM) and performance is compared with snake models based on Balloon force and Gradient Vector Force (GVF), Distance Regularized Level Set Method (DRLSE). ii) Feature extraction done by Shape and Texture based features. iii) Brain Tumour detection performed by various tree classifiers. Based on investigation FCMLSM is well suited segmentation method and Random Forest is the most optimum classifier for this problem. This method gives accuracy of 97% and with minimum classification error. The time taken to detect Tumour is approximately 2 mins for an examination (30 slices).

Automatic Visual Feature Extraction And Measurement of Mushroom (Lentinus Edodes L.)

  • Heon-Hwang;Lee, C.H.;Lee, Y.K.
    • 한국농업기계학회:학술대회논문집
    • /
    • 한국농업기계학회 1993년도 Proceedings of International Conference for Agricultural Machinery and Process Engineering
    • /
    • pp.1230-1242
    • /
    • 1993
  • In a case of mushroom (Lentinus Edodes L.) , visual features are crucial for grading and the quantitative evaluation of the growth state. The extracted quantitative visual features can be used as a performance index for the drying process control or used for the automatic sorting and grading task. First, primary external features of the front and back sides of mushroom were analyzed. And computer vision based algorithm were developed for the extraction and measurement of those features. An automatic thresholding algorithm , which is the combined type of the window extension and maximum depth finding was developed. Freeman's chain coding was modified by gradually expanding the mask size from 3X3 to 9X9 to preserve the boundary connectivity. According to the side of mushroom determined from the automatic recognition algorithm size thickness, overall shape, and skin texture such as pattern, color (lightness) ,membrane state, and crack were quantified and measured. A portion of t e stalk was also identified and automatically removed , while reconstructing a new boundary using the Overhauser curve formulation . Algorithms applied and developed were coded using MS_C language Ver, 6.0, PC VISION Plus library functions, and VGA graphic function as a menu driven way.

  • PDF

Classification of Man-Made and Natural Object Images in Color Images

  • Park, Chang-Min;Gu, Kyung-Mo;Kim, Sung-Young;Kim, Min-Hwan
    • 한국멀티미디어학회논문지
    • /
    • 제7권12호
    • /
    • pp.1657-1664
    • /
    • 2004
  • We propose a method that classifies images into two object types man-made and natural objects. A central object is extracted from each image by using central object extraction method[1] before classification. A central object in an images defined as a set of regions that lies around center of the image and has significant color distribution against its surrounding. We define three measures to classify the object images. The first measure is energy of edge direction histogram. The energy is calculated based on the direction of only non-circular edges. The second measure is an energy difference along directions in Gabor filter dictionary. Maximum and minimum energy along directions in Gabor filter dictionary are selected and the energy difference is computed as the ratio of the maximum to the minimum value. The last one is a shape of an object, which is also represented by Gabor filter dictionary. Gabor filter dictionary for the shape of an object differs from the one for the texture in an object in which the former is computed from a binarized object image. Each measure is combined by using majority rule tin which decisions are made by the majority. A test with 600 images shows a classification accuracy of 86%.

  • PDF

화상 정보를 이용한 이동 로봇의 장애물 회피 알고리즘 (Obstacle Avoidance Algorithm of a Mobile Robot using Image Information)

  • 권오상;이응혁;한영환;홍승홍
    • 전기전자학회논문지
    • /
    • 제2권1호
    • /
    • pp.139-149
    • /
    • 1998
  • 이동로봇의 주행에 있어서 단일센서만으로는 문제점들이 있다. 이러한 문제에 대하여 본 논문에서는 초음파센서와 카메라의 장점을 취한 시스템을 제안한다. 또한 이동로봇의 주행동안에 장애물을 회피하기 위한 좌표추출 알고리즘을 제안한다. 이동로봇의 전반부에 카메라를 장착하였으며 제안된 알고리즘의 유용성을 검증하기 위한 실험을 하였다. 실험결과 초음파 센서만을 사용하는 경우보다 영상센서를 사용하는 경우에 에러율이 줄어 들었다. 또한 측정된 값들을 사용하여 장애물을 회피하기 위한 경로를 생성할 수 있다.

  • PDF

Implementation of Digital Image Processing for Coastline Extraction from Synthetic Aperture Radar Imagery

  • Lee, Dong-Cheon;Seo, Su-Young;Lee, Im-Pyeong;Kwon, Jay-Hyoun;Tuell, Grady H.
    • 한국측량학회지
    • /
    • 제25권6_1호
    • /
    • pp.517-528
    • /
    • 2007
  • Extraction of the coastal boundary is important because the boundary serves as a reference in the demarcation of maritime zones such as territorial sea, contiguous zone, and exclusive economic zone. Accurate nautical charts also depend on well established, accurate, consistent, and current coastline delineation. However, to identify the precise location of the coastal boundary is a difficult task due to tidal and wave motions. This paper presents an efficient way to extract coastlines by applying digital image processing techniques to Synthetic Aperture Radar (SAR) imagery. Over the past few years, satellite-based SAR and high resolution airborne SAR images have become available, and SAR has been evaluated as a new mapping technology. Using remotely sensed data gives benefits in several aspects, especially SAR is largely unaffected by weather constraints, is operational at night time over a large area, and provides high contrast between water and land areas. Various image processing techniques including region growing, texture-based image segmentation, local entropy method, and refinement with image pyramid were implemented to extract the coastline in this study. Finally, the results were compared with existing coastline data derived from aerial photographs.

MPEG-7을 위한 에지 히스토그램 서술자 (An Edge Histogram Descriptor for MPEG-7)

  • 박동권;전윤석;박수준;원치선
    • 방송공학회논문지
    • /
    • 제5권1호
    • /
    • pp.31-40
    • /
    • 2000
  • 본 논문에서는 MPEG-7의 여러 가지 서술자 중 영상의 에지 정보를 효과적으로 표현하기 위한 에지 히스토그램 서술자를 제안한다. 영상에서 추출된 에지 정보를 효율적으로 서술하기 위하여 영상 전체(global), 부분 영역(semi-global), 그리고 국부(local) 영역에 대한 에지 히스토그램으로 구분하여 에지 히스토그램 서술자의 구조를 채택하였다. 또한, 제안된 서술자의 에지 검출 기법은 기존의 픽셀단위 검출 방법과는 달리 블록단위 에지 검출을 사용함으로써 에지 특징의 추출 속도를 높이며 블록을 압축의 기본단위로 하는 MPEG-1, 2의 압축 비트스트림에서도 빠른 속도로 직접 에지 특징을 검출할 수 있는 장점이 있다. 제안된 방법이 MPEG-7의 비균질 질감 서술자로써 같은 부류에 속하는 웨이브릿 기반 서술자 및 국부 에지 기반 서술자와 비교하여 검색 효율과 특징 추출 속도가 모두 우수함을 실험을 통해 확인하였다.

  • PDF

iOS 플랫폼에서 Active Shape Model 개선을 통한 얼굴 특징 검출 (Improvement of Active Shape Model for Detecting Face Features in iOS Platform)

  • 이용환;김흥준
    • 반도체디스플레이기술학회지
    • /
    • 제15권2호
    • /
    • pp.61-65
    • /
    • 2016
  • Facial feature detection is a fundamental function in the field of computer vision such as security, bio-metrics, 3D modeling, and face recognition. There are many algorithms for the function, active shape model is one of the most popular local texture models. This paper addresses issues related to face detection, and implements an efficient extraction algorithm for extracting the facial feature points to use on iOS platform. In this paper, we extend the original ASM algorithm to improve its performance by four modifications. First, to detect a face and to initialize the shape model, we apply a face detection API provided from iOS CoreImage framework. Second, we construct a weighted local structure model for landmarks to utilize the edge points of the face contour. Third, we build a modified model definition and fitting more landmarks than the classical ASM. And last, we extend and build two-dimensional profile model for detecting faces within input images. The proposed algorithm is evaluated on experimental test set containing over 500 face images, and found to successfully extract facial feature points, clearly outperforming the original ASM.

Plant Species Identification based on Plant Leaf Using Computer Vision and Machine Learning Techniques

  • Kaur, Surleen;Kaur, Prabhpreet
    • Journal of Multimedia Information System
    • /
    • 제6권2호
    • /
    • pp.49-60
    • /
    • 2019
  • Plants are very crucial for life on Earth. There is a wide variety of plant species available, and the number is increasing every year. Species knowledge is a necessity of various groups of society like foresters, farmers, environmentalists, educators for different work areas. This makes species identification an interdisciplinary interest. This, however, requires expert knowledge and becomes a tedious and challenging task for the non-experts who have very little or no knowledge of the typical botanical terms. However, the advancements in the fields of machine learning and computer vision can help make this task comparatively easier. There is still not a system so developed that can identify all the plant species, but some efforts have been made. In this study, we also have made such an attempt. Plant identification usually involves four steps, i.e. image acquisition, pre-processing, feature extraction, and classification. In this study, images from Swedish leaf dataset have been used, which contains 1,125 images of 15 different species. This is followed by pre-processing using Gaussian filtering mechanism and then texture and color features have been extracted. Finally, classification has been done using Multiclass-support vector machine, which achieved accuracy of nearly 93.26%, which we aim to enhance further.