• Title/Summary/Keyword: textile-based pressure sensor

Search Result 9, Processing Time 0.02 seconds

Electrical and Physical Properties of Sheath-core Type Conductive Textile Sensor with Home-Textile (Sheath-core 구조 전도사 섬유센서의 Home-Textile 적용을 위한 전기·물리학적 특성연구)

  • Cho, Kwang-Nyun;Jung, Hyun-Mi
    • Fashion & Textile Research Journal
    • /
    • v.16 no.1
    • /
    • pp.145-152
    • /
    • 2014
  • The usage of textile-based sensors has increased due to their many advantages (compared to IT sensors) when applied to body assessment and comfort. Textile-based sensors have different detecting factors such as pressure, voltage, current and capacitance to investigate the characteristics. In this study, textile-based sensor fabrics with sheath-core type conductive yarns were produced and the relationship between capacitance changes and applied load was investigated. The physical and electric properties of textile-based sensor fabrics were also investigated under various laminating conditions. A textile based pressure sensor that uses a sheath-core conductive yarn to ensure the stability of the pressure sensor in the textile-based sensor (the physical structure of the reaction characteristic of the capacitance) is important for the stability of the initial value of the initial capacitance value outside the characteristic of the textile structural environment. In addition, a textile based sensor is displaced relative to the initial value of the capacitance change according to pressure changes in the capacitance value of the sensor due to the fineness of the high risk of noise generation. Changing the physical structure of the fabric through the sensor characteristic of the pressure sensor via the noise generating element of laminating (temperature, humidity, and static electricity) to cut off the voltage output element to improve the data reliability could be secured.

Development of Multi-layer Pressure Sensor using PEDOT Vapor Phase Polymerization (PEDOT 기상중합 원단을 이용한 멀티 레이어 압력 센서 개발)

  • Lim, Seung Ju;Bae, Jong Hyuk;Jang, Seong Jin;Lim, Jee Young;Park, Keun Hae;Ko, Jae Hoon
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.3
    • /
    • pp.186-191
    • /
    • 2018
  • Smart textile industries have been precipitously developed and extended to electronic textiles and wearable devices in recent years. In particular, owing to an increasingly aging society, the elderly healthcare field has been highlighted in the smart device industries, and pressure sensors can be utilized in various elderly healthcare products such as flooring, mattress, and vital-sign measuring devices. Furthermore, elderly healthcare products need to be more lightweight and flexible. To fulfill those needs, textile-based pressure sensors is considered to be an attractive solution. In this research, to apply a textile to the second layer using a pressure sensing device, a novel type of conductive textile was fabricated using vapor phase polymerization of poly(3,4-ethylenedioxythiophene) (PEDOT). Vapor phase polymerization is suitable for preparing the conductive textile because the reaction can be controlled simply under various conditions and does not need high-temperature processing. The morphology of the obtained PEDOT-conductive textile was observed through the Field Emission Scanning Electron Microscope (FESEM). Moreover, the resistance was measured using an ohmmeter and was confirmed to be adjustable to various resistance ranges depending on the concentration of the oxidant solution and polymerization conditions. A 3-layer 81-point multi-pressure sensor was fabricated using the PEDOT-conductive textile prepared herein. A 3D-viewer program was developed to evaluate the sensitivity and multi-pressure recognition of the textile-based multi-pressure sensor. Finally, we confirmed the possibility that PEDOT-conductive textiles could be utilized by pressure sensors.

Body Pressure Distribution and Textile Surface Deformation Measurement for Quantification of Automotive Seat Design Attributes (운전자의 체압 분포 및 시트변형에 대한 정량화 측정시스템)

  • Kwon, Yeong-Eun;Kim, Yun-Young;Lee, Yong-Goo;Lee, Dongkyu;Kwon, Ohwon;Kang, Shin-Won;Lee, Kang-Ho
    • Journal of Sensor Science and Technology
    • /
    • v.27 no.6
    • /
    • pp.397-402
    • /
    • 2018
  • Proper seat design is critical to the safety, comfort, and ergonomics of automotive driver's seats. To ensure effective seat design, quantitative methods should be used to evaluate the characteristics of automotive seats. This paper presents a system that is capable of simultaneously monitoring body pressure distribution and surface deformation in a textile material. In this study, a textile-based capacitive sensor was used to detect the body pressure distribution in an automotive seat. In addition, a strain gauge sensor was used to detect the degree of curvature deformation due to high-pressure points. The textile-based capacitive sensor was fabricated from the conductive fabric and a polyurethane insulator with a high signal-to-noise ratio. The strain gauge sensor was attached on the guiding film to maximize the effect of its deformation due to bending. Ten pressure sensors were placed symmetrically in the hip area and six strain gauge sensors were distributed on both sides of the seat cushion. A readout circuit monitored the absolute and relative values from the sensors in realtime, and the results were displayed as a color map. Moreover, we verified the proposed system for quantifying the body pressure and fabric deformation by studying 18 participants who performed three predefined postures. The proposed system showed desirable results and is expected to improve seat safety and comfort when applied to the design of various seat types. Moreover, the proposed system will provide analytical criteria in the design and durability testing of automotive seats.

Microfiber-based Textile Pressure Sensor with High Sensitivity and Skin-breathability (높은 민감도 및 우수한 피부 통기성을 가진 마이크로 섬유 기반의 직물형 유연 압력 센서)

  • Kangto Han;Jang-hee Choi;Jeongwoo Lim;Hyeyoung Gong;Geun Yeol Bae
    • Textile Coloration and Finishing
    • /
    • v.35 no.3
    • /
    • pp.179-187
    • /
    • 2023
  • In this study, we developed a microfiber-based flexible pressure sensor with high sensitivity and excellent skin breathability. A nonwoven fabric composed of microfibers was prepared by electrospinning, which resulted in excellent moisture permeability of the sensor (143 g∙m-2∙h-1). In particular, high-pressure sensitivity (0.36 kPa-1) was achieved by introducing submicron structures on the microfiber surface by controlling the ambient humidity during electrospinning. The fabrication technology of the microfiber-based flexible pressure sensors reported in this study is expected to contribute to the commercialization of flexible pressure sensors applicable to long-term wearable health monitoring as well as virtual/augmented reality and electronic skin applications.

Activity and Safety Recognition using Smart Work Shoes for Construction Worksite

  • Wang, Changwon;Kim, Young;Lee, Seung Hyun;Sung, Nak-Jun;Min, Se Dong;Choi, Min-Hyung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.2
    • /
    • pp.654-670
    • /
    • 2020
  • Workers at construction sites are easily exposed to many dangers and accidents involving falls, tripping, and missteps on stairs. However, researches on construction site monitoring system to prevent work-related injuries are still insufficient. The purpose of this study was to develop a wearable textile pressure insole sensor and examine its effectiveness in managing the real-time safety of construction workers. The sensor was designed based on the principles of parallel capacitance measurement using conductive textile and the monitoring system was developed by C# language. Three separate experiments were carried out for performance evaluation of the proposed sensor: (1) varying the distance between two capacitance plates to examine changes in capacitance charges, (2) repeatedly applying 1 N of pressure for 5,000 times to evaluate consistency, and (3) gradually increasing force by 1 N (from 1 N to 46 N) to test the linearity of the sensor value. Five subjects participated in our pilot test, which examined whether ascending and descending the stairs can be distinguished by our sensor and by weka assessment tool using k-NN algorithm. The 10-fold cross-validation method was used for analysis and the results of accuracy in identifying stair ascending and descending were 87.2% and 90.9%, respectively. By applying our sensor, the type of activity, weight-shifting patterns for balance control, and plantar pressure distribution for postural changes of the construction workers can be detected. The results of this study can be the basis for future sensor-based monitoring device development studies and fall prediction researches for construction workers.

Implementation of Real-time Sedentary Posture Correction Cushion Using Capacitive Pressure Sensor Based on Conductive Textile

  • Kim, HoonKi;Park, HyungSoo;Oh, JiWon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.2
    • /
    • pp.153-161
    • /
    • 2022
  • Physical activities are decreasing and sitting time is increasing due to the automation, smartization, and intelligence of necessary household items throughout daily life. Recent healthcare studies have reported that the likelihood of obesity, diabetes, cardiovascular disease, and early death increases in proportion to sitting time. In this paper, we develop a sitting posture correction cushion in real time using capacitive pressure sensor based on conductive textile. It develops a pressure sensor using conductive textile, a key component of the posture correction cushion, and develops a low power-based pressure measurement circuit. It provides a function to transmit sensor values measured in real time to smartphones using BLE short-range wireless communication on the posture correction cushion, and develops a mobile application to check the condition of the sitting posture through these sensor values. In the mobile app, you can visualize your sitting posture and check it in real time, and if you keep it in the wrong posture for a certain period of time, you can notify it through an alarm. In addition, it is possible to visualize the sitting time and posture accuracy in a graph. Through the correction cushion in this paper, we experiment with how effective it is to correct the user's posture by recognizing the user's sitting posture, and present differentiation and excellence compared to other product.

A Study of the Basic Design for Smart Clothing based on Measurement of the Respiration (호흡 측정 기능의 스마트 의류를 위한 기초 디자인 연구)

  • Cho, Ha Kyung;Min, Se Dong
    • Science of Emotion and Sensibility
    • /
    • v.15 no.4
    • /
    • pp.415-424
    • /
    • 2012
  • According to introduction of Well-Being lifestyle and ageing society, vital sign monitoring system which can be continued measurement of vital sign has been increased their important in field of the healthcare. Under this trend, Respiration monitoring system has been studied and developed in a various way to apply continued monitoring and non-conscious monitoring system. But, Study of the respiration monitoring system based on consumer needs and usability test is insufficient. In this study, Textile capacitive pressure sensor(TCPS) of belt type was developed and tested it's utility and subjective sensibility. TCPS measures respiration signals and can be derived in real time monitoring. As a result, monitoring respiration using textile capacitive pressure sensor offers a promising possibility of convenient measurement of respiration rate (correlation (r=0.9553, p<0.0001). In the result of usability and wearability test, all of categorizes(perceived change, wearability, movement, facility of management, usefulness) were received favorable evaluation on usability test( mean value : 3.8), and suitable location of TCPS in the clothing is deriven on the abdomen part. According to synthetical results, Basic smart clothing design based on respiration monitoring system is proposed.

  • PDF

Carbon-nanotube-based Spacer Fabric Pressure Sensors for Biological Signal Monitoring and the Evaluation of Sensing Capabilities (생체신호 모니터링을 위한 CNT 기반 스페이서 직물 압력센서 구현 및 센싱 능력 평가)

  • Yun, Ha-yeong;Kim, Sang-Un;Kim, Joo-Yong
    • Science of Emotion and Sensibility
    • /
    • v.24 no.2
    • /
    • pp.65-74
    • /
    • 2021
  • With recent innovations in the ICT industry, the demand for wearable sensing devices to recognize and respond to biological signals has increased. In this study, a three-dimensional (3D) spacer fabric was embedded in a single-wall carbon nanotube (SWCNT) dispersive solution through a simple penetration process to develop a monolayer piezoresistive pressure sensor. To induce electrical conductivity in the 3D spacer fabric, samples were immersed in the SWCNT dispersive solution and dried. To determine the electrical properties of the impregnated specimen, a universal testing machine and multimeter were used to measure the resistance of the pressure change. Moreover, to examine the changes in the electrical properties of the sensor, its performance was evaluated by varying the concentration, number of penetrations, and thickness of the specimen. Samples that penetrated twice in the SWCNT distributed solution of 0.1 wt% showed the best performance as sensors. The 7-mm thick sensors showed the highest GF, and the 13-mm thick sensors showed the widest operating range. This study confirms the effectiveness of the simple process of fabricating smart textile sensors comprising 3D spacer fabrics and the excellent performance of the sensors.

Recent Progress of Ti3Ci2Tix MXene Electrode Based Self-Healing Application (Ti3Ci2Tix MXene 기반 전극 소재의 자가 치유 적용 기술 개발 동향)

  • Jun Sang Choi;Seung-Boo Jung;Jong-Woong Kim
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.30 no.3
    • /
    • pp.20-34
    • /
    • 2023
  • Single or multi-layered two-dimensional (2D) materials, with thicknesses in the order of a few nanometers, have garnered substantial attention across diverse research domains owing to their distinct properties, including electrical conductivity, flexibility, and optical transparency. These materials are frequently subjected to repetitive mechanical actions in applications like electronic skin (E-Skin) and smart textiles. Moreover, they are often exposed to external factors like temperature, humidity, and pressure, which can lead to a deterioration in component durability and lifespan. Consequently, significant research efforts are directed towards developing self-healing properties in these components. Notably, recent investigations have revealed promising outcomes in the field of self-healing composite materials, with Ti3Ci2Tix MXene being a prominent component among the myriad of available 2D materials. In this paper, we aim to introduce various synthesis methods and characteristics of Ti3Ci2Tix MXene, followed by an exploration of self-healing application technologies based on Ti3Ci2Tix MXene.