• Title/Summary/Keyword: text-generation

Search Result 367, Processing Time 0.026 seconds

A Study on Generation Method of Intonation using Peak Parameter and Pitch Lookup-Table (Peak 파라미터와 피치 검색테이블을 이용한 억양 생성방식 연구)

  • Jang, Seok-Bok;Kim, Hyung-Soon
    • Annual Conference on Human and Language Technology
    • /
    • 1999.10e
    • /
    • pp.184-190
    • /
    • 1999
  • 본 논문에서는 Text-to-Speech 시스템에서 사용할 억양 모델을 위해 음성 DB에서 모델 파라미터와 피치 검색테이블(lookup-table)을 추출하여 미리 구성하고, 합성시에는 이를 추정하여 최종 F0 값을 생성하는 자료기반 접근방식(data-driven approach)을 사용한다. 어절 경계강도(break-index)는 경계강도의 특성에 따라 고정적 경계강도와 가변적 경계강도로 세분화하여 사용하였고, 예측된 경계강도를 기준으로 억양구(Intonation Phrase)와 액센트구(Accentual Phrase)를 설정하였다. 특히, 액센트구 모델은 인지적, 음향적으로 중요한 정점(peak)을 정확하게 모델링하는 것에 주안점을 두어 정점(peak)의 시간축, 주파수축 값과 이를 기준으로 한 앞뒤 기울기를 추정하여 4개의 파라미터로 설정하였고, 이 파라미터들은 CART(Classification and Regression Tree)를 이용하여 예측규칙을 만들었다. 경계음조가 나타나는 조사, 어미는 정규화된(normalized) 피치값과 key-index로 구성되는 검색테이블을 만들어 보다 정교하게 피치값을 예측하였다. 본 논문에서 제안한 억양 모델을 본 연구실에서 제작한 음성합성기를 통해 합성하여 청취실험을 거친 결과, 기존의 상용 Text-to-Speech 시스템에 비해 자연스러운 합성음을 얻을 수 있었다.

  • PDF

Automatic Generation Subtitle Service with Kinetic Typography according to Music Sentimental Analysis (음악 감정 분석을 통한 키네틱 타이포그래피 자막 자동 생성 서비스)

  • Ji, Youngseo;Lee, Haram;Lim, SoonBum
    • Journal of Korea Multimedia Society
    • /
    • v.24 no.8
    • /
    • pp.1184-1191
    • /
    • 2021
  • In a pop song, the creator's intention is communicated to the user through music and lyrics. Lyric meaning is as important as music, but in most cases lyrics are delivered to users in a static form without non-verbal cues. Providing lyrics in a static text format is inefficient in conveying the emotions of a music. Recently, lyrics video with kinetic typography are increasingly provided, but producing them requires expertise and a lot of time. Therefore, in this system, the emotions of the lyrics are found through the analysis of the text of the lyrics, and the deep learning model is trained with the data obtained by converting the melody into a Mel-spectrogram format to find the appropriate emotions for the music. It sets properties such as motion, font, and color using the emotions found in the music, and automatically creates a kinetic typography video. In this study, we tried to enhance the effect of conveying the meaning of music through this system.

Generative Interactive Psychotherapy Expert (GIPE) Bot

  • Ayesheh Ahrari Khalaf;Aisha Hassan Abdalla Hashim;Akeem Olowolayemo;Rashidah Funke Olanrewaju
    • International Journal of Computer Science & Network Security
    • /
    • v.23 no.4
    • /
    • pp.15-24
    • /
    • 2023
  • One of the objectives and aspirations of scientists and engineers ever since the development of computers has been to interact naturally with machines. Hence features of artificial intelligence (AI) like natural language processing and natural language generation were developed. The field of AI that is thought to be expanding the fastest is interactive conversational systems. Numerous businesses have created various Virtual Personal Assistants (VPAs) using these technologies, including Apple's Siri, Amazon's Alexa, and Google Assistant, among others. Even though many chatbots have been introduced through the years to diagnose or treat psychological disorders, we are yet to have a user-friendly chatbot available. A smart generative cognitive behavioral therapy with spoken dialogue systems support was then developed using a model Persona Perception (P2) bot with Generative Pre-trained Transformer-2 (GPT-2). The model was then implemented using modern technologies in VPAs like voice recognition, Natural Language Understanding (NLU), and text-to-speech. This system is a magnificent device to help with voice-based systems because it can have therapeutic discussions with the users utilizing text and vocal interactive user experience.

100 K-Poison: Poisonous Texts Resistance Test Dataset For Korean Generative Models (100 K-Poison: 한국어 생성 모델을 위한 독성 텍스트 저항력 검증 데이터셋 )

  • Li Fei;Yejee Kang;Seoyoon Park;Yeonji Jang;Hansaem Kim
    • Annual Conference on Human and Language Technology
    • /
    • 2023.10a
    • /
    • pp.149-154
    • /
    • 2023
  • 본고는 한국어 생성 모델의 독성 텍스트 저항 능력을 검증하기 위해 'CVALUE' 데이터셋에서 추출한 고난도 독성 질문-대답 100쌍을 바탕으로 한국어 생성 모델을 위한 '100 K-Poison' 데이터셋을 시범적으로 구축했다. 이 데이터셋을 토대로 4가지 대표적인 한국어 생성 모델 'ZeroShot TextClassifcation'과 'Text Generation7 실험을 진행함으로써 현재 한국어 생성 모델의 독성 텍스트 식별 및 응답 능력을 종합적으로 고찰했고, 모델 간의 독성 텍스트 저항력 격차 현상을 분석했으며, 앞으로 한국어 생성 모델의 독성 텍스트 식별 및 웅대 성능을 한층 더 강화하기 위한 '이독공독(以毒攻毒)' 학습 전략을 새로 제안하였다.

  • PDF

Cultural Contents of Image Texts and Memory Industry as the Memory - Focused on the Counter Memory of the Sixth Generation Chinese Movies - (기억으로서의 영상매체와 기억산업의 문화콘텐츠 - 중국 6세대 영화의 대항기억을 중심으로 -)

  • Kim, Gye-Hwan
    • The Journal of the Korea Contents Association
    • /
    • v.9 no.2
    • /
    • pp.163-172
    • /
    • 2009
  • As cultural contents are rising to the surface, the contents and interests regarding the industries that utilize the culture become higher than any other times. Culture is performed with memory, and the culture that excludes memory cannot exist. The memory exceeds a dimension of the individual and operates with an assembled and social memory. Furthermore the culture requires media to put memories inevitable. Therefore, recent image texts are coming to the attention as new storage media. So this essay analyzed the meaning of 'memory' as social-cultural memory by putting the sixth generation Chinese movies to the center and restoration of image text that puts memory in it. And also, I examined the cultural meanings of 'individual memories' as the 'counter memory' and tried to find the possibility of junction between memory industry and the contents. I focused on the sixth generation Chinese movies because these movies made remarkable progresses in the international film festivals though they were made in 'underground' by objecting to 'official memory' proposed by the Chinese government.

A Study on Hangul Handwriting Generation and Classification Mode for Intelligent OCR System (지능형 OCR 시스템을 위한 한글 필기체 생성 및 분류 모델에 관한 연구)

  • Jin-Seong Baek;Ji-Yun Seo;Sang-Joong Jung;Do-Un Jeong
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.4
    • /
    • pp.222-227
    • /
    • 2022
  • In this paper, we implemented a Korean text generation and classification model based on a deep learning algorithm that can be applied to various industries. It consists of two implemented GAN-based Korean handwriting generation models and CNN-based Korean handwriting classification models. The GAN model consists of a generator model for generating fake Korean handwriting data and a discriminator model for discriminating fake handwritten data. In the case of the CNN model, the model was trained using the 'PHD08' dataset, and the learning result was 92.45. It was confirmed that Korean handwriting was classified with % accuracy. As a result of evaluating the performance of the classification model by integrating the Korean cursive data generated through the implemented GAN model and the training dataset of the existing CNN model, it was confirmed that the classification performance was 96.86%, which was superior to the existing classification performance.

Automatic Training Corpus Generation Method of Named Entity Recognition Using Knowledge-Bases (개체명 인식 코퍼스 생성을 위한 지식베이스 활용 기법)

  • Park, Youngmin;Kim, Yejin;Kang, Sangwoo;Seo, Jungyun
    • Korean Journal of Cognitive Science
    • /
    • v.27 no.1
    • /
    • pp.27-41
    • /
    • 2016
  • Named entity recognition is to classify elements in text into predefined categories and used for various departments which receives natural language inputs. In this paper, we propose a method which can generate named entity training corpus automatically using knowledge bases. We apply two different methods to generate corpus depending on the knowledge bases. One of the methods attaches named entity labels to text data using Wikipedia. The other method crawls data from web and labels named entities to web text data using Freebase. We conduct two experiments to evaluate corpus quality and our proposed method for generating Named entity recognition corpus automatically. We extract sentences randomly from two corpus which called Wikipedia corpus and Web corpus then label them to validate both automatic labeled corpus. We also show the performance of named entity recognizer trained by corpus generated in our proposed method. The result shows that our proposed method adapts well with new corpus which reflects diverse sentence structures and the newest entities.

  • PDF

A Study of Pre-trained Language Models for Korean Language Generation (한국어 자연어생성에 적합한 사전훈련 언어모델 특성 연구)

  • Song, Minchae;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.4
    • /
    • pp.309-328
    • /
    • 2022
  • This study empirically analyzed a Korean pre-trained language models (PLMs) designed for natural language generation. The performance of two PLMs - BART and GPT - at the task of abstractive text summarization was compared. To investigate how performance depends on the characteristics of the inference data, ten different document types, containing six types of informational content and creation content, were considered. It was found that BART (which can both generate and understand natural language) performed better than GPT (which can only generate). Upon more detailed examination of the effect of inference data characteristics, the performance of GPT was found to be proportional to the length of the input text. However, even for the longest documents (with optimal GPT performance), BART still out-performed GPT, suggesting that the greatest influence on downstream performance is not the size of the training data or PLMs parameters but the structural suitability of the PLMs for the applied downstream task. The performance of different PLMs was also compared through analyzing parts of speech (POS) shares. BART's performance was inversely related to the proportion of prefixes, adjectives, adverbs and verbs but positively related to that of nouns. This result emphasizes the importance of taking the inference data's characteristics into account when fine-tuning a PLMs for its intended downstream task.

A Study on Dataset Generation Method for Korean Language Information Extraction from Generative Large Language Model and Prompt Engineering (생성형 대규모 언어 모델과 프롬프트 엔지니어링을 통한 한국어 텍스트 기반 정보 추출 데이터셋 구축 방법)

  • Jeong Young Sang;Ji Seung Hyun;Kwon Da Rong Sae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.12 no.11
    • /
    • pp.481-492
    • /
    • 2023
  • This study explores how to build a Korean dataset to extract information from text using generative large language models. In modern society, mixed information circulates rapidly, and effectively categorizing and extracting it is crucial to the decision-making process. However, there is still a lack of Korean datasets for training. To overcome this, this study attempts to extract information using text-based zero-shot learning using a generative large language model to build a purposeful Korean dataset. In this study, the language model is instructed to output the desired result through prompt engineering in the form of "system"-"instruction"-"source input"-"output format", and the dataset is built by utilizing the in-context learning characteristics of the language model through input sentences. We validate our approach by comparing the generated dataset with the existing benchmark dataset, and achieve 25.47% higher performance compared to the KLUE-RoBERTa-large model for the relation information extraction task. The results of this study are expected to contribute to AI research by showing the feasibility of extracting knowledge elements from Korean text. Furthermore, this methodology can be utilized for various fields and purposes, and has potential for building various Korean datasets.

An Analysis on the Operational state of Distance Universities' Electronic Libraries through the Life-long Education Law (평생교육법령하의 원격대학 전자도서관의 운영 실태 분석)

  • Lee Jong-Moon
    • Journal of Korean Library and Information Science Society
    • /
    • v.36 no.4
    • /
    • pp.99-113
    • /
    • 2005
  • The purpose of this research is to analyze the operational state of Distance universities' electronic libraries through the Lifelong Education Law, and to find out the related problems. The main investigational focus was on the operational methodologies of the libraries and the usage levels of the full-text service. The data were collected through accessing the URLs of 17 Distance universities authorized till 2005. The result is that every university is operating their libraries either on their own $(17.7\%)$ or by using the links to the external libraries $(82.4\%)$. However, only $(35.3\%)$ of the surveyed universities provide the full-text service available on the Internet. Thus, in order to establish the fourth generation Distance university based on the Internet and Web, it is urgently needed to improve the construction and operation standards of electronic libraries in the Lifelong Education Law.

  • PDF