• Title/Summary/Keyword: text preprocessing

Search Result 135, Processing Time 0.024 seconds

A Hangul Document Image Retrieval System Using Rank-based Recognition (웨이브렛 특징과 순위 기반 인식을 이용한 한글 문서 영상 검색 시스템)

  • Lee Duk-Ryong;Kim Woo-Youn;Oh Il-Seok
    • The Journal of the Korea Contents Association
    • /
    • v.5 no.2
    • /
    • pp.229-242
    • /
    • 2005
  • We constructed a full-text retrieval system for the scanned Hangul document images. The system consists of three parts; preprocessing, recognition, and retrieval components. The retrieval algorithm uses recognition results up to k-ranks. The algorithm is not only insensitive to the recognition errors, but also has the advantage of user-controllable recall and precision. For the objective performance evaluation, we used the scanned images of the Journal of Korea Information Science Society provided by KISTI. The system was shown to be practical through theevaluationofrecognitionandretrievalrates.

  • PDF

Text mining-based Data Preprocessing and Accident Type Analysis for Construction Accident Analysis (건설사고 분석을 위한 텍스트 마이닝 기반 데이터 전처리 및 사고유형 분석)

  • Yoon, Young Geun;Lee, Jae Yun;Oh, Tae Keun
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.2
    • /
    • pp.18-27
    • /
    • 2022
  • Construction accidents are difficult to prevent because several different types of activities occur simultaneously. The current method of accident analysis only indicates the number of occurrences for one or two variables and accidents have not reduced as a result of safety measures that focus solely on individual variables. Even if accident data is analyzed to establish appropriate safety measures, it is difficult to derive significant results due to a large number of data variables, elements, and qualitative records. In this study, in order to simplify the analysis and approach this complex problem logically, data preprocessing techniques, such as latent class cluster analysis (LCCA) and predictor importance were used to discover the most influential variables. Finally, the correlation was analyzed using an alluvial flow diagram consisting of seven variables and fourteen elements based on accident data. The alluvial diagram analysis using reduced variables and elements enabled the identification of accident trends into four categories. The findings of this study demonstrate that complex and diverse construction accident data can yield relevant analysis results, assisting in the prevention of accidents.

Assessment of performance of machine learning based similarities calculated for different English translations of Holy Quran

  • Al Ghamdi, Norah Mohammad;Khan, Muhammad Badruddin
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.4
    • /
    • pp.111-118
    • /
    • 2022
  • This research article presents the work that is related to the application of different machine learning based similarity techniques on religious text for identifying similarities and differences among its various translations. The dataset includes 10 different English translations of verses (Arabic: Ayah) of two Surahs (chapters) namely, Al-Humazah and An-Nasr. The quantitative similarity values for different translations for the same verse were calculated by using the cosine similarity and semantic similarity. The corpus went through two series of experiments: before pre-processing and after pre-processing. In order to determine the performance of machine learning based similarities, human annotated similarities between translations of two Surahs (chapters) namely Al-Humazah and An-Nasr were recorded to construct the ground truth. The average difference between the human annotated similarity and the cosine similarity for Surah (chapter) Al-Humazah was found to be 1.38 per verse (ayah) per pair of translation. After pre-processing, the average difference increased to 2.24. Moreover, the average difference between human annotated similarity and semantic similarity for Surah (chapter) Al-Humazah was found to be 0.09 per verse (Ayah) per pair of translation. After pre-processing, it increased to 0.78. For the Surah (chapter) An-Nasr, before preprocessing, the average difference between human annotated similarity and cosine similarity was found to be 1.93 per verse (Ayah), per pair of translation. And. After pre-processing, the average difference further increased to 2.47. The average difference between the human annotated similarity and the semantic similarity for Surah An-Nasr before preprocessing was found to be 0.93 and after pre-processing, it was reduced to 0.87 per verse (ayah) per pair of translation. The results showed that as expected, the semantic similarity was proven to be better measurement indicator for calculation of the word meaning.

SMS Text Messages Filtering using Word Embedding and Deep Learning Techniques (워드 임베딩과 딥러닝 기법을 이용한 SMS 문자 메시지 필터링)

  • Lee, Hyun Young;Kang, Seung Shik
    • Smart Media Journal
    • /
    • v.7 no.4
    • /
    • pp.24-29
    • /
    • 2018
  • Text analysis technique for natural language processing in deep learning represents words in vector form through word embedding. In this paper, we propose a method of constructing a document vector and classifying it into spam and normal text message, using word embedding and deep learning method. Automatic spacing applied in the preprocessing process ensures that words with similar context are adjacently represented in vector space. Additionally, the intentional word formation errors with non-alphabetic or extraordinary characters are designed to avoid being blocked by spam message filter. Two embedding algorithms, CBOW and skip grams, are used to produce the sentence vector and the performance and the accuracy of deep learning based spam filter model are measured by comparing to those of SVM Light.

A Study of the Use of Step by Processing for the Reading Letters Using Terahertz (테라헤르츠를 이용하여 글자를 읽어내기 위한 전처리 과정에 대한 연구)

  • Park, Inho;Kim, Seongyoon;Kim, Youngseop;Lee, Yonghwan
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.2
    • /
    • pp.106-109
    • /
    • 2017
  • Recently, ancient documents are actively studied and discussed. However, ancient documents has a few problems on interpretation. The antique documents are too fragile to hand over. So, some studies have been carried out using terahertz to read ancient documents without damaging them. Three techniques are necessary to read letters using terahertz. First, PPEX algorithm, which distinguishes pages. Second, TGSI technique, which distinguishes text from paper on a page. Third, CCSC algorithm, which transforms signals to letters. In this paper, we will describe the preprocessing process to facilitate the recognition of letters before applying the post processing as we mentioned above. Histogram equalization, Histogram stretching and the Sobel filter were applied to the preprocessing.

  • PDF

Text Region Detection Method in Mobile Phone Video (휴대전화 동영상에서의 문자 영역 검출 방법)

  • Lee, Hoon-Jae;Sull, Sang-Hoon
    • Journal of the Institute of Electronics Engineers of Korea SP
    • /
    • v.47 no.5
    • /
    • pp.192-198
    • /
    • 2010
  • With the popularization of the mobile phone with a built-in camera, there are a lot of effort to provide useful information to users by detecting and recognizing the text in the video which is captured by the camera in mobile phone, and there is a need to detect the text regions in such mobile phone video. In this paper, we propose a method to detect the text regions in the mobile phone video. We employ morphological operation as a preprocessing and obtain binarized image using modified k-means clustering. After that, candidate text regions are obtained by applying connected component analysis and general text characteristic analysis. In addition, we increase the precision of the text detection by examining the frequency of the candidate regions. Experimental results show that the proposed method detects the text regions in the mobile phone video with high precision and recall.

Development of Online Fashion Thesaurus and Taxonomy for Text Mining (텍스트마이닝을 위한 패션 속성 분류체계 및 말뭉치 웹사전 구축)

  • Seyoon Jang;Ha Youn Kim;Songmee Kim;Woojin Choi;Jin Jeong;Yuri Lee
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.46 no.6
    • /
    • pp.1142-1160
    • /
    • 2022
  • Text data plays a significant role in understanding and analyzing trends in consumer, business, and social sectors. For text analysis, there must be a corpus that reflects specific domain knowledge. However, in the field of fashion, the professional corpus is insufficient. This study aims to develop a taxonomy and thesaurus that considers the specialty of fashion products. To this end, about 100,000 fashion vocabulary terms were collected by crawling text data from WSGN, Pantone, and online platforms; text subsequently was extracted through preprocessing with Python. The taxonomy was composed of items, silhouettes, details, styles, colors, textiles, and patterns/prints, which are seven attributes of clothes. The corpus was completed through processing synonyms of terms from fashion books such as dictionaries. Finally, 10,294 vocabulary words, including 1,956 standard Korean words, were classified in the taxonomy. All data was then developed into a web dictionary system. Quantitative and qualitative performance tests of the results were conducted through expert reviews. The performance of the thesaurus also was verified by comparing the results of text mining analysis through the previously developed corpus. This study contributes to achieving a text data standard and enables meaningful results of text mining analysis in the fashion field.

Improving Lookup Time Complexity of Compressed Suffix Arrays using Multi-ary Wavelet Tree

  • Wu, Zheng;Na, Joong-Chae;Kim, Min-Hwan;Kim, Dong-Kyue
    • Journal of Computing Science and Engineering
    • /
    • v.3 no.1
    • /
    • pp.1-4
    • /
    • 2009
  • In a given text T of size n, we need to search for the information that we are interested. In order to support fast searching, an index must be constructed by preprocessing the text. Suffix array is a kind of index data structure. The compressed suffix array (CSA) is one of the compressed indices based on the regularity of the suffix array, and can be compressed to the $k^{th}$ order empirical entropy. In this paper we improve the lookup time complexity of the compressed suffix array by using the multi-ary wavelet tree at the cost of more space. In our implementation, the lookup time complexity of the compressed suffix array is O(${\log}_{\sigma}^{\varepsilon/(1-{\varepsilon})}\;n\;{\log}_r\;\sigma$), and the space of the compressed suffix array is ${\varepsilon}^{-1}\;nH_k(T)+O(n\;{\log}\;{\log}\;n/{\log}^{\varepsilon}_{\sigma}\;n)$ bits, where a is the size of alphabet, $H_k$ is the kth order empirical entropy r is the branching factor of the multi-ary wavelet tree such that $2{\leq}r{\leq}\sqrt{n}$ and $r{\leq}O({\log}^{1-{\varepsilon}}_{\sigma}\;n)$ and 0 < $\varepsilon$ < 1/2 is a constant.

Analysis of patterns in meteorological research and development using a text-mining algorithm (텍스트 마이닝 알고리즘을 이용한 기상청 연구개발분야 과제의 추세 분석)

  • Park, Hongju;Kim, Habin;Park, Taeyoung;Lee, Yung-Seop
    • The Korean Journal of Applied Statistics
    • /
    • v.29 no.5
    • /
    • pp.935-947
    • /
    • 2016
  • This paper considers the analysis of patterns in meteorological research and development using a text-mining algorithm as the method of analyzing unstructured data. To analyze text data, we define a list of terms related to meteorological research and development, construct times series of a term-document matrix through data preprocessing, and identify terms that have upward or downward patterns over time. The proposed methodology is applied to multi-year plans funded by Korea Meteorological Administration research and development programs from 2011 to 2015.

The Frequency Analysis of Teacher's Emotional Response in Mathematics Class (수학 담화에서 나타나는 교사의 감성적 언어 빈도 분석)

  • Son, Bok Eun;Ko, Ho Kyoung
    • Communications of Mathematical Education
    • /
    • v.32 no.4
    • /
    • pp.555-573
    • /
    • 2018
  • The purpose of this study is to identify the emotional language of math teachers in math class using text mining techniques. For this purpose, we collected the discourse data of the teachers in the class by using the excellent class video. The analysis of the extracted unstructured data proceeded to three stages: data collection, data preprocessing, and text mining analysis. According to text mining analysis, there was few emotional language in teacher's response in mathematics class. This result can infer the characteristics of mathematics class in the aspect of affective domain.