Improving Lookup Time Complexity of Compressed
Suffix Arrays using Multi-ary Wavelet Tree

Zheng Wu
Department of Computer Science and Engineering, Pusan National University, Korea

Joong Chae Na
Department of Computer Science and Engineering, Sejong University, Korea

Minhwan Kim
Department of Computer Science and Engineering, Pusan National University, Korea

Dong Kyue Kim'

Department of Electronics and Communication Engineering, Hanyang University, Korea
Received 22 November 2008; Accepted 13 March 2009

In a given text T of size n, we need to search for the information that we are interested. In order
to support fast searching, an index must be constructed by preprocessing the text. Suffix array
is a kind of index data structure. The compressed suffix array (CSA) is one of the comgressed
indices based on the regularity of the suffix array, and can be compressed to the k™ order
empirical entropy. In this paper we improve the lookup time complexity of the compressed suffix
array by using the multi-ary wavelet tree at the cost of more space. In our implementation, the
lookup time complexity of the compressed suffix array is O(log?~9 n log, o), and the space of
the compressed suffix array is &' nH,(T)+ O(n log log n/ logé n) bits, where o is the size of
alphabet, H, is the kth order empirical entropy, r is the branching factor of the multi-ary
wavelet tree such that 2<r<./n and r<O(log. °n), and 0 < £< 1/2 is a constant.

Categories and Subject Descriptors: E.1 [Data Structures]: Arrays; trees; E.4 [Coding and
Information Theory]: Data compaction and compression; F.2.2 [Analysis of Algorithms
and Problem Complexity]: Nonnumerical Algorithms and Problems—pattern matching;
sorting and searching; H.3.3 [Information Storage and Retrieval]: Information Search and
Retrieval-search process

General Terms: Algorithms, Theory
Additional Key Words and Phrases: Compressed suffix arrays, entropy, rank and select, text

*; corresponding author

Copyright(c)2009 by The Korean Institute of Information Scientists and Engineers (KIISE).
Permission to make digital or hard copies of part or all of this work for personal or classroom use
is granted without fee provided that copies are not made or distributed for profit or commercial
advantage and that copies bear this notice and the full citation on the first page. Permission to
post author-prepared versions of the work on author's personal web pages or on the noncommercial
servers of their employer is granted without fee provided that the KIISE citation and notice of the
copyright are included. Copyrights for components of this work owned by authors other than
KIISE must be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to
post on servers, or to redistribute to lists, requires an explicit prior permission and/or a fee.
Request permission to republish from: JCSE Editorial Office, KIISE. FAX +82 2 521 1352 or email
office@kiise.org. The Office must receive a signed hard copy of the Copyright form.

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009, Pages 1-14.

2 Zheng Wu et al.

compression, text indexing, wavelet trees

1. INTRODUCTION
1.1 Backgrounds

With the fast development of the Internet and computer technologies, the amount of
the electronic data is growing at an exponential rate. However, as a result, retrieving
useful data efficiently and exactly becomes a big challenge. Therefore, the index data
structure is required to help finding the useful information that we need.

The most basic task of extracting information from text is string matching. String
matching 1is the process of finding the occurrences of a short string that is called a
pattern inside a text. Two classical indices for string matching are the suffix tree
[McCreight 1976] and the suffix array [Manber and Myers 1993], which permit
finding all the occurrences of any patterns without scanning the text sequentially.
However, the space requirements are from 4 to 20 times the text size. Therefore, the
space of the index obviously becomes the toughest problem.

A new trend in designing index focuses on compressing the index while permitting
fast access to the index at the same time. As a result, designing a compressed index
is actually to compress an index in order to reduce its space while at the cost of more
time to access it. Therefore, a lot of work has been done to obtain various tradeoffs
between the space taken by the index and the time to access the original index. We
denote accessing the original index by the term lookup.

The leading research work on compressed indices is represented by the compressed
suffix array, the FM-index [Ferragina and Manzini 2005; Ferragina et al. 2007] and
the compact suffix array [Makinen 2003; Makinen and Navarro 2004], which support
the functionalities of suffix arrays and suffix trees while stored in compressed form.
All of the three indices take advantage of diffierent regularities of the suffix array to
achieve compressibility. The compressed suffix array [Grossi and Vitter 2006] defines
the function ¥ to represent the suffix array in compressed form while permitting fast
access to the suffix array. The compressed suffix array was developed into a self-index
and is related to the 0'" empirical entropy [Sadakane 2002; Sadakane 2003].

The most recent result of compressed suffix arrays was given by Grossi et al.
[Grossi et al. 2003]. In their main result, they show that the space of compressed
suffix arrays can be related to the ™ order empirical entropy by introducing a new
partition scheme of function W. In their implementation, they first do a recursive
suffix array decomposition to obtain conceptual data structures of compressed suffix
arrays. Then they partition the function ¥ at each maintained level of the recursive
decomposition. Finally they implement these function ¥ at all of the maintained
levels and some other data structures using compressed representations of binary
sequences supporting rank and select [Pagh 1999; Raman et al. 2002]. Moreover, they
introduce the wavelet tree to implement the function ¥ of the first recursive
decomposition and maintain implementations of other levels unchanged in order to
obtain a more compact space complexity of compressed suffix array at the cost of more
lookup time. In this space/time tradeoff, given a text T of size n, they implement
compressed suffix arrays using & ‘nHy(T)+O(n log log n/log®n) bits of space and

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Improving Lookup Time Complexity of Compressed Suffix Arrays 3

Table I. Comparison of complexities between a previous result and our result on compressed suffix
arrays. a and ¢ are constants such that 0 <a<1and 0 < £<1/2.

CSA Space (bits) Lookup Time Conditions
CSA ~1 n log log n (ﬁ)
[Grossi et al. 2003] &'nH, +O(_1(§:g;n_g) Ollog, “nlog o k<alog,n

&lnH, +O(%} = k<alog,n-1
CSA (Proposed) ’ O(loggS n log, G)
+O(r lrl)glog n) 2§r£ﬁ
og.n

permitting O(logf,/(l*g) n logo) lookup time, where o is the size of the alphabet, H), is

the k™ order empirical entropy, and £is a constant such that 0 < £< 1/2. This tradeoff
1s shown in the first row of Table I.

1.2 Our Contributions

In this paper we improve the lookup time complexity of the implementation of
compressed suffix arrays given by Grossi et al. [Grossi et al. 2003]. We use multi-ary
wavelet trees [Ferragina et al. 2007] to implement function W of the first level of the
recursive decomposition in compressed suffix arrays that was previously implemented
using binary wavelet trees, and maintain the implementation of other parts of the
structure unchanged. Our main contribution is an implementation of compressed
suffix arrays using & 'nHy(T)+O(n log log n/log®n) bits of space while supporting
O(log”@ n log,) lookup time, where r is the branching factor of the multi-ary
wavelet tree such that 2<r<./n and r<O(log! “n).

The general form of our result is shown in the second row of Table I. We improve

the previous lookup time complexity O(log”?" ™ n log 6) to O(log?" ¥ n log, o) at the

cost of O(r log log nflog, n) bits of more space, where 2<r < ./n and this condition is
due to the multi-ary wavelet tree. When 2<r< ./n and r < O(logiﬁg n), O log log n/
log,n) can be absorbed into the O(n log log n/login), and thus our main result
described above is obtained. When 2<r<./n and r>O(log! *n), the compressed
suffix array takes & 'nH(TYO(log log n/log,n) bits of space while supporting
O(logf,/ 1°9 1 log, o) lookup time. In this result we improve the lookup time complexity
further for increased value of r, while at the cost of larger space complexity.

Moreover, when the alphabet is O(polylog(n)) which is a reasonable size of alphabet
for natural languages, the space of the compressed suffix array can be bounded by
& 'nHy(T)+On log log n/log’,n)+O(n/log” n) bits and the lookup time complexity is
O(logf,/(lfs) n), where yu is a constant such that 0 < ¢ < 1. The space can be bounded
by & 'nH(T)+O(n log log nllogi n) bits when £ < u < 1.

2. PRELIMINARIES
2.1 The Empirical Entropy of a Text

Let T denote a text of size n. Each character of 7" belongs to an ordered alphabet
2 ={ay,..., &y} of size o. Let T[i] be the i'" character in T, T’ be the suffix of T starting
from position i, and T;; be the substring of T starting at position i and ending at

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

4 Zheng Wu et al.

position j. T[n] = # is a special character in T that only occurs once and
lexicographically larger than any other characters in E. Let n; denote the number of
occurrences of the character ¢; in T.

The 0% order empirical entropy of T [Manzini 2001] is defined as

g n; n;
HO(D = —Z ;]'Og_r? ’
i=1

where we assume 0 log 0=10 (all logarithms are taken to base 2 in this paper). The
value of nHy(T) represents the maximum compression we can achieve by using a fixed
codeword that can be uniquely decoded to each alphabet character.

We can achieve greater compression by choosing the codeword of ¢; depending on
the k characters preceding it (we call these k& characters a context, where k is a
constant). For any length-k context xex*, let x7 be the concatenation of the single
characters following each occurrence of x inside 7. The k™ order empirical entropy of
T [Manzini 2001] is defined as

Hy (D) = 2 3 erfHo(wr).

xeX

The value of nH,(T) represents a lower bound to the compression we can achieve
using codes which depend on their length-% contexts.

2.2 The Suffix Array and Function ¥

The suffix array [Manber and Myers 1993] is an array SA[1, n] which contains all
starting positions of the suffixes of the text T such that Tss < Tsag < Tsap <
= TSA[n], where “~” represents the lexicographical order between strings, i.e., the

i SA[] Wwli] suffix T,
1: 2 6 abbdaccbdbadca#
2: 6 12 accbdbadca#
3: 12 15 adca#
4: 15 16 a#
5: 11 3 badca#
6: 3 7 bbdaccbdbadca#
7: 4 13 bdaccbdbadca#
8: 9 14 bdbadca#
9: 1 1 cabbdaccbdbadca#
10: 14 4 ca#
11: 8 8 cbdbadca#
12: 7 11 ccbdbadca#
13: 5 2 daccbdbadca#
14: 10 5 dbadca#
15: 13 10 dca#
16: 16 16 #
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
T = c a b b d acc b d b adoca #

Figure 1. The suffix array and function ¥ of text T' = cabbdaccbdbadcat.

Journal of Computing Science and Engineering, Vol. 8, No. 1, March 2009

Improving Lookup Time Complexity of Compressed Suffix Arrays 5

suffix array gives the lexicographical order of all suffixes of the text T. The suffix
array takes O(n log n) bits of space. Given a pattern P of size p, the suffix array
answers the number of occurrences of P in O(p log n) time. An example of the suffix
array is shown in Figure 1. The core concept of compressed suffix arrays is based on
the regularity of the suffix array — the function ¥ [Grossi and Vitter 2006; Sadakane
2002; 2003; Grossi et al. 2003], which maps suffix Ty to suffix Tgap;e in the suffix
array and thus enables scanning the text through the indices of the suffix array in
forward direction. Its formal definition is as follows:

Y(i) = J, such that SA[j] = SA[i] (mod n)+1.

An example of function ¥ is shown in Figure 1.

We introduce regularities of the function ¥ that can be used in compressing V.
Since suffixes are sorted in SA, we can partition SA into at most o intervals according
to the first character of each suffix Tgup;. For character yeyx, we define y-list such
that W(i) is in y-list if the first character of Tgup is y. For example, in Figure 2,
observe that, for 5<i <8, ¥(i) belong to b-list because the first character of suffixes
Tgap is b. Each y-list can further be partitioned into sublists (x,y) using a k:
character prefix x (length-k context x) of each suffix Ty in y-list. An example of this
partition scheme is shown in Figure 2, when & = 1. Note that yx is a prefix of Tgup;
for entries in {x,) and all entries in the row corresponding to a context x form a
contiguous index interval of the suffix array [Grossi et al. 2003].

2.3 Compressed Representations of Sequences
Most all compressed full-text indices take advantage of compressed representations of
sequences which support rank and select operations on it. Given a general sequence

T of length n, where T[i] = ¢ and cey, we compress it while supporting the following
operations:

— TTi]: accesses the ith entry of T;
—rank T, i): returns the number of occurrences of character ¢ in 717 ;;
~ select (T, j): veturns the position of the jth occurrence of character ¢ in T.

The simplified form is the compressed representation of binary sequences. One recent
solution for representing compressed binary sequences is given by Pagh [Pagh 1999]
and Raman et al. [Raman et al. 2002].

X a list b list clist dlist # list
a 3 1, 4 2

b 6 7 8 5

c 12 11 10 9
d 15 13, 14

16

Figure 2. An example of Partitioning ¥ according to its length-k contexts, when k = 1.

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

6 Zheng Wu et al.

Lemma 2.1 [Pagh 1999; Raman et al. 2002] Let B[1, n] be a binary sequence
containing t occurrences of bit 1. There exist a fully indexable dictionary (FID) that
supports Blil, rank(B, i) and select.(B, j) in constant time using

n log log n) _ n log log n
tog(") + 0(—L€—10g 81 = 1 Hy(B) + 0(—g—g—10g og 1)
bits of space, where ce {0, 1}.
Grossi et al. [Grossi et al. 2003] introduced the wavelet tree which is a balanced
binary search tree. A lemma regarding the wavelet tree is given as follows:

Lemma 2.2 [Grossi et al. 2003] Let T[1, n) be a string over an arbitrary alphabet
X, where 2| = 6. The wavelet tree built on T takes

nHy(T) + O(n llc:)gglong n)

bits of space and for any character cey and 1<i<n, 1<j<n, supports

O (log o)
time TUil, rank(T, i) and select (T, j) operations.

The wavelet tree has been extended to its generalized form — the multi-ary wavelet
tree [Ferragina et al. 2007], as shown in Figure 3. The height of this r-ary tree is at
most 1+log, 5, which is smaller than that of the binary wavelet tree. Then the access,
rank and select can be calculated in a similar way as in the binary wavelet tree.

Lemma 2.3 [Ferragina et al. 2007] Let T[1, n] be a sequence over an arbitrary
alphabet 3, where 3| = . The multi-ary wavelet tree built on T for 2<r <min(c, J/n)
takes

rn log log n)

nHy(T) + O(c log n) + O(Tog. n

bits of space, and supports queries T[il, rank (T, i) and select (T, j) in

1 2 3 4 5 6 7 8 9 1011 12 13 14 15 16
cdgabaefcefbgfd#
123 1112212213221

abc def g#
1 2 3 4 5 6 1 23 4 5 6 7 1t o2 3
c abachb d e fef fd g g #
312 3 2 232331 1 2

/‘1\ 1/l\ 1
Figure 3. An example of the multi-ary wavelet tree, when ¢ = 8, r =

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Improving Lookup Time Complexity of Compressed Suffix Arrays 7

O(log,)
time, for any cey and 1<i, j<n.

If o= O(polylog(n)), then r can be chosen so that the resulting multi-ary wavelet tree
takes

nHO(T)+O(I)

log“n

bits of space and supports all the three kinds of queries in constant time, for any
constant 0 < u < 1.

Note that it should be guaranteed that r = o(log n/log log n) [Ferragina et al. 2007].

3. COMPRESSED SUFFIX ARRAY

In this section we introduce the compressed suffix array (CSA) and a recent
implementation [Grossi et al. 2003]. We focus on the data structures of CSA, the
decomposition scheme, the space and lookup time complexity analysis. As for how to
do different kinds of queries and how to achieve self-indexing, the descriptions are
given in [Sadakane 2002; 2003] in detail, and are not covered here.

CSA contains the same information as the suffix array, which requires less space
while at the cost of non-constant lookup time. A general introduction for CSA is as
follows: given a text T of length n and its suffix array SA, the compressed suffix array
for T supports the following operations without requiring explicit storage of T or SA:

— compress: produces a compressed representation that encodes T and SA;

— lookup: given 1<i<n, returns SA[i];

- substring: decompresses the substring of 7" consisting of the first s characters (a
prefix) of the suffix Ty, for 1<i<n and 1<s<n. SAp + 1.

We first introduce the basic structure of CSA and then one recent implementation.

3.1 Basic Structure of Compressed Suffix Arrays

Now we introduce the recursive decomposition scheme of CSA during which its
structure is built. In the base case, we denote SA by SA,, and let ny = n. For simplicity
we assume that n is a power of 2. In the inductive phase 0 << h where h is the final
phase, we start with suffix array SA, which is available by induction. SA4; stores a
permutation of 1, 2,..., n;, where n;= n/2'. The permutation results from sorting the
suffixes of T whose starting positions are multiples of 2'. That is, in each inductive
phase 0<l<h, given SA;, we transform it into an equivalent but more succinct
representation consisting of a binary sequence Bj, the function ¥; and a suffix array
SAj;. We run three main steps as follows:

(1) Construct a binary sequence B; of n; bits supporting rank, such that B[i]=1 if
SA[i] is even and B[] =0 if SA;[i] is odd;

(2) Construct function ¥ on SA;, which is denoted by ¥y

(3) Group together even text positions in SA; and divide each of them by 2. The
resulting values form a permutation of {1, 2,..., n.,}, where ny; = /2 =n/2"*!. Store
them in a new suffix array SA;,; of length n;.; and remove the old suffix array SA,.

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

8 Zheng Wu et al.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
SAg= 2 6121511 3 4 9 1 14 8 7 5 101316
111 0001001100101
W= 6121516 3 7 1314 1 4 8 11 2 5 10 9

1 2 3 4 5 6 7 8 1 2 3 4

SAy, = 1 3 6 2 7 4 5 8 SA, = 3 1 2 4

BB=00110101 B, =00 11

v, =46 52 8 7 31 wv,= 4 3 1 2
Figure 4. An example of suffix array decomposition.

Figure 4 illustrates the process of the recursive decomposition scheme. We store B;
and ¥, for 0<I<h, and SA4; for [= h. Note that SA; is not stored for 0<I<h.

Given B; and ¥, for 0<[<h, and SA4, stored for [=h, the original SA[i] can be
retrieved in O(h) time for any 1 <i<n if both B, and ¥, can be accessed in constant
time. Lookup for SAj[i] can be answered as follows:

2-8A,, 4 [rank,(By, 1)] if Bj[i]=1

Sl = {SAI[\Pl(i)]—l if Bi]=0

We introduce a basic implementation of CSA. We can keep a total of three levels:
level 0, level h'= %log log n and level h =loglog n. The problem is how to reconstruct
SA, from SA; and how to reconstruct SA, from SA;,. Since there are ny entries of SA,
stored into S4;,, we redefine By of length n such that its 1 bits mark the positions of
SAq that are maintained in SA;. Similarly we redefine By,

In order to retrieve SAylil, we use ¥, to walk along indices i’, i", ..., such that
SAg[i}+1 = SAy[i], SAq[ilT+1 = SAy[i"], and so on, until we reach an index marked by
By. Let s be the number of steps in the walk and r be the rank of the index thus found
in B,. We switch to level i’ and reconstruct the 7" entry at level A’ from the explicit
representation of SA;, by a similar walk until we find an index marked by By, Let s’
be the number of steps in the latter walk and r’ be the rank of the index thus found
in By. Then SAgil = SA,[r12" +s'- 2 + 5- 2°, which means the lookup time complexity

is O(/log n).

3.2 Implementation using Wavelet Trees

Now we describe an implementation given by Grossi et al. [Grossi et al. 2003]. In
order to store the final data structures in a more general setting, we maintain the
following levels:

- Level 0 is the same as before;

—The last level h=1log log n— ¢ log log, n-log log log n, where 0 <e<1/2 is a
constant;

—Level h'=1log log, n between level 0 and level A;

— One level every other yh'levels between level 0 and level k', where y= &/(1-&) with

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

Improving Lookup Time Complexity of Compressed Suffix Arrays 9

Table II. The space complexities of all data structures of compressed suffix arrays.

Information Data Structure Space Complexity (bits)
Y Wavelet Tree nH, + O (%)
og.n
Wifor 0<I<h FID LnH,+ O(zloslog n)
log® n
Bl for0 <[< h' FID O(n log}og n)
logi n
log log »
SAy Integer Array O(_g_" e)

0<y<1lie, yl+1=¢l

That is, we maintain £ —1 levels between level 0 and level k' (including boundary
levels), and & levels in total.

Thus we have to store the following information:

~¥; and B, for all [= iyh’ where 0<i<Z;
— S84, for [=h.

We show how to store these information efficiently. According to the regularity of the
function P, at each level [for 0 <I<h’, ¥, forms o contiguous intervals as described
in Section 2.3. At level 0, each contiguous interval belonging to the same context x is
implemented using a wavelet tree. At level 0 <I <A/, each sublist {x, ¥) is implemented
using a FID. And each B; for 0 <I<h'is also implemented using a FID respectively.
Finally, at level h, SA;, is stored explicitly. A summary is given in Table I1. By adding
up the space of all data structures above, we get the following lemma:

Lemma 3.1 [Grossi et al. 2003] The compressed suffix array can be implemented
using

%nHk(T)+O(n log 1og n)
log: n
bits of space, where k< alog, n, 0 < a < 1, so that lookup operation (accessing to the
original suffix array entries) takes

&

O(Iog}?n log o-)
time, for any fixed value 0 < < %

4. COMPRESSED SUFFIX ARRAYS USING MULTI-ARY WAVELET TREES

In this section we give our proposition of CSA by using multi-ary wavelet trees to
improve the lookup time complexity of CSA. We show that multi-ary wavelet trees
can be applied to implement ¥, so that lookup time complexity can be improved. We
use the same suffix array decomposition scheme that is used in Section 3.2.

In order to get a general result, we consider the multi-ary wavelet tree without
giving any assumptions on the alphabet X first. By utilizing multi-ary wavelet trees

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

10 Zheng Wu et al.

to implement ‘¥, belonging to the same contexts, we can obtain that the following.
Theorem 4.1 By utilizing multi-ary wavelet trees to implement ¥, the compressed
suffix array can be implemented using

1 n loglog n
inH. (o 2B R
D (logi n)

bits of space, when r< O(logl *n), or using

1 rloglogn
(1O 25T

bits of space, when r> O(logk °n), where k< alog, n -1, 0 < a < 1, so that accessing
to the original suffix array entries takes

O(log},—f_gn log, 0')

time, for any fixed value 0 < ¢ < %, and r is the branching factor of the multi-ary

wavelet tree such that 2<r<min(o, ./n).

Proof. Our proposition differs from the original one only in the implementation of
W, We begin with proving the space of multi-ary wavelet trees for ¥, For each
context x, namely, a row in Figure 2, we use one multi-ary wavelet tree to encode ¥,
belonging to the same x. By Lemma 2.3 we have that the space taken by each row is

n*Ho(,)+ O(c log nx)m(fn_llOOg_ngxgﬁ)

bits of space, where n” is the number of ‘P entries in context x. Since there are at
most ¢” contexts, by adding up the space we obtain that the space consumes at most

rn log log n)

k+1
nH,+0(c*" logn)+0[T

bits,
The first term is due to the definition of the k' order empirical entropy, that is

> n*Hy(x,,) = nH,.
3 ¥
xel
The second term holds as follows
. nytngt.tn e o1
Z O(clog n)<0| olog| —————= =0(c" " logn).
& o ‘

xex

To compare O(c*'"log n) and O(n log log n/log® n), we have

O(n log log n)

login

1-a &
log log n log"c
- >0 2—2% >0(log logn log®o) .
0(0" Mlogn) (log'**n) (log logn log o)

The first inequality is due to the fact that k< alog,n — 1 for 0 < @ < 1. Thus O(c*"

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

improving Lookup Time Complexity of Compressed Suffix Arrays 11

log n) can be absorbed into O(n log log n/logi n).
The third term is due to that

n
r—

Z O(rnx log log nx)SGkO o

log, n*

log log =
g8 | O(rn log log n)
B log, n)

X
xex’

log, ﬁ

Note that the inequality holds because O(n* log log n*/log, n®) is a concave function.
To compare O(rn log log nflog, n) and O(n log log n/log;, n), we have that

O(rn log log n)
log, n B O(r)
O(n log Tog n) - logl *n)
log: n

Therefore, when r is chosen to be r<O(log)®n), O@n log log nflog,n) can be
absorbed into O(n log log n/log® n); when r> O(logl n), O(n log log n/log’ n) can be
absorbed into O(rn log log n/log, n).

Because other data structures are the same as before, by adding the space of all of
them together the space of Theorem 4.1 is proved.

The only remaining task is to compare the time of stepping from level 0 to level A’
and that of stepping from level A’ to h. The former one is

P
Oklogf,*gn log,c) .
And the latter one is

£

oh k= log n _logonlogo _ logg n logy,, ,0< O(log?n log,c5>)

logt *nloglogn loglogn

Therefore, the final lookup time complexity is O(log?" ?n log,o).

Note that this lookup time has been improved over Lemma 3.1 at the cost of more
space [.

By bounding the alphabet to be O(polylog(n)), which is a reasonable alphabet size, we
can prove the improvement to be as follows:

Corollary 4.1 If o= O(polylog(n)), then r can be chosen so that by utilizing the multi-

ary wavelet tree to encode ¥, values, the compressed suffix array can be implemented
using

%nHk + O(n log 1og n)
log: n

bits of space, when ¢<u<1, or using

j_;nHk ¥ O(lo’gl” n)

bits of space, when 0 < u < g where k < alog,n, 0 < a < 1, so that lookup time

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

12 Zheng Wu et al.

(accessing to the original suffix array entries) takes

O(logf)

time, for any fixed value 0 < < %

Proof. The analysis is similar to the proof of Theorem 4.1. That is, for each context
x, each multi-ary wavelet tree requires

anO(x)+ O(l o)

bits.
When adding up the space taken by multi-ary wavelet trees corresponding to all x,

<o+ o)

> (R Hyp + O(log”

x€X

bits of space is required.
Note that the inequality holds because O(n/log" n”) is a concave function.
To compare O(n log log nflog? n) and O(n/log” n), we obtain that

O(n log log n

logon 7 _ O(log log n log® olog”*n) = O(log log" “n log”~n) .

O(lo:” n)

Therefore, if 0 < u < & O(n log log n/log’ n) can be absorbed into O(n/log” n); in the
other case if &< u <1, O(nflog”n) can be absorbed inte O(n log log n/log; n). By
putting up all data structures together, the space in Corollary 4.2 is proved.
The last piece of proof is the time complexity when stepping from level k' to h,
which can be obtained as the following:
gh W log® nlogo _ logi™n £

" Toglogn log fog n(log log n) = O((log“n)l_g) d

5. CONCLUSION

In this paper we focused on improving lookup time complexity of the compressed
suffix array. We improve the lookup time complexity of compressed suffix arrays
using multi-ary wavelet tree at the cost of more space. We proved that the compressed
suffix array can be stored in £ 'nHy(T) + O(n log log n/log’ n) bits of space, where r
is the branching factor of the multi-ary wavelet tree, so that lookup time of the
compressed suffix array can be improved to O(log”" ?n log,c). When o= O(polylog
(n)), we showed that the space of the compressed suffix array is §nH(T) +
O(n log log n/logi n) + O(n/log” n) bits, where g is a constant such that 0 < y< 1, and
the lookup time was improved to O(log®").

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2008

Improving Lookup Time Complexity of Compressed Suffix Arrays 13

ACKNOWLEDGMENTS

This research was supported by the MKE (The Ministry of Knowledge Economy),
Korea, under the ITRC (Information Technology Research Center) support program
supervised by the IITA (Institute for Information Technology Advancement) (ITTA-
2009-(C1090-0902-0003)).

REFERENCES

FERRAGINA, P. and G. MANZINT. 2005. Index compressed texts. J. Assoc. Comput. Mach. 52(4):
552-581.

FERRAGINA, P., G. MANZINI, V. MAKINEN, and G. NAVARRO. 2007. Compressed representation of
sequences and full-text indexes. ACM Transactions on Algorithms (TALG), 3(2):1-25.
Grossi, R., A. GUPTA, and J. VITTER. 2003. High-order entropy-compressed text indexes. In
Proceedings of the 14th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), 841~

850.

GrossI, R. and J. VITTER. 2006. Compressed suffix arrays and suffix trees with applications to
text indexing and string matching. SIAM J. Comput. 35(2):378-407.

MAKINEN, V. 2003. Compact suffix array — a space-efficient full-text index. Fund. Inform. 56(1-
2):191-210.

MAKINEN, V. and G. NAVARRO. 2004. Compressed compact suffix arrays. in Proceedings of the
15th Annual Symposium on Combinational Pattern Matching (CPM). Lecture Notes in
Computer Science, vol. 3109. Springer-Verlag, Berlin, Germany, 420-433.

MANBER, U. and G. MYERS. 1993. Suffix arrays: a new method for on-line string searches. SIAM
J. Comput. 22(5):935-948.)

ManzINI, G. 2001. An analysis of the burrows-wheeler transform. J. Assoc. Comput. Marc.
48(3):407-430.

McCRrEIGHT, E. 1976. A space-economical suffix tree construction algorithm. J. Assoc. Comput.
Mare. 23(2):262-272.

PAGH, R. 1999. Low redundancy in dictionaries with o(1) worst case lookup time. In Proceed-
ings of the 26th International Colloquium on Automata, Languages and Programming
(ICALP), 595-604.

RaMAN, R., V. RAMAN, and S. Ra0. 2002. Succinct indexable dictionaries with applications
toencoding k-ary trees and multisets. In Proceedings of the 13th Annual ACM-SIAM
Symposium on Discrete Algorithms (SODA), 233-242.

SADAKANE, K. 2002. Succinct representations of lep information and improvements in the
compressed suffix arrays. In Proceedings of the 13th Annual ACM-SIAM Symposium on
Discrete Algorithms (SODA), 225-232.

SADAKANE, K. 2003. New text indexing functionalities of the compressed suffix arrays. J. Alg.
48(2):294-313.

Zheng Wu He received an M.S. in the Dept. of Computer Science and
Engineering in Pusan National University, Korea. He currently works as
an engineer in LG Electronics, Korea.

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

14 Zheng Wu et al.

Joong Chae Na He received a B.S,, an M.S,, and a Ph.D. in Computer
Science and Engineering from Seoul National University in 1998, 2000,
and 2005, respectively. He worked as a visiting postdoctoral researcher in
the Department of Computer Science at the University of Helsinki in 2006.
He is currently a professor in Department of Computer Science and
Engineering at Sejong University. His research interests include design
and analysis of algorithms, and bioinformatics.

Minhwan Kim He received his B.S., M.S., and Ph.D. degrees from Seoul
National University, Seoul, Korea, in 1980, 1983, and 1988, respectively.
He is currently a professor of the Dept. of Computer Science and
Engineering in Pusan National University, Korea. His research interests
include multimedia information retrieval, intelligent surveillance system,
and computer vision.

Dong Kyue Kim He received his B.S., M.S., and Ph.D. degrees from
Seoul National University, Seoul, Korea, in 1992, 1994, and 1988,
respectively. He is currently an associate professor of the Dept. of
Electronics and Communication Engineering in Hanyang University,
Korea. His research interests are in the area of embedded security
systems, crypto-coprocessors,, and theory of computation.

Journal of Computing Science and Engineering, Vol. 3, No. 1, March 2009

