본 연구에서는 과학기술 텍스트 마이닝을 이용하여 국방 유망기술을 식별하는 방법론을 제안하고 있다. 그동안 국가차원에서 NTIS와 DTiMS를 포함한 과학기술 관련 정보체계를 구축하는데 많은 노력을 기울여왔는데 과학기술 정보체계는 연구자와 정책입안자, 또는 실무자들이 기술적 변화를 분석하고 효율적인 업무진행, 지식공유, 전략개발, 또는 조직의 경쟁력을 높이기 위한 정책개발에 활용성이 크다. 본 연구에서는 INSPEC 데이터베이스에 과학기술 텍스트마이닝 기법을 적용하여 미래 무인전투기술에 대한 지식네트워크 구조와 국방 유망기술을 식별하는 과정을 예시함으로써 구축된 과학기술 정보체계를 이용한 미래 유망기술의 식별 방법론을 제시하였다.
본 연구에서는 췌장암의 유전자-단백질 상호작용 네트워크를 구성하고, 관련 연구에서 주요하게 언급되는 유전자-단백질의 유발관계 사슬을 파악함으로써, 췌장암의 원인을 규명하는 실증적인 연구로 이어질 수 있는 미발견 공공 지식을 제공하려 하였다. 이를 위하여 텍스트마이닝과 주경로 분석을 Swanson의 ABC 모델에 적용해 중간 개념인 B를 방향성을 가진 다단계 모델로 확장하고 가장 의미 있는 경로를 도출하였다. 본 연구의 주제가 된 췌장암의 사례처럼 시작점과 끝점조차 한정할 수 없는 미발견 공공 지식 추론에서 주경로 분석은 유용한 도구가 될 수 있을 것이다.
Purpose The study aims to compare the online review writing behavior of users in China and the United States through text mining on online reviews' text content. In particular, existing studies have verified that there are differences in online reviews between different cultures. Therefore, the purpose of this study is to compare the differences between reviews written by Chinese and American tourists by analyzing text contents of online reviews based on cultural theory. Design/methodology/approach This study collected and analyzed online review data for hotels, targeting Chinese and US tourists who visited Korea. Then, we analyzed review data through text mining like sentiment analysis and topic modeling analysis method based on previous research analysis. Findings The results showed that Chinese tourists gave higher ratings and relatively less negative ratings than American tourists. And American tourists have more negative sentiments and emotions in writing online reviews than Chinese tourists. Also, through the analysis results using topic modeling, it was confirmed that Chinese tourists mentioned more topics about the hotel location, room, and price, while American tourists mentioned more topics about hotel service. American tourists also mention more topics about hotels than Chinese tourists, indicating that American tourists tend to provide more information through online reviews.
This research proposes an alternative approach to machine learning based ones for text categorization. For using machine learning based approaches for any task of text mining, documents should be encoded into numerical vectors; it causes two problems: huge dimensionality and sparse distribution. Although there are various tasks of text mining such as text categorization, text clustering, and text summarization, the scope of this research is restricted to text categorization. The idea of this research is to avoid the two problems by encoding a document or documents into a table, instead of numerical vectors. Therefore, the goal of this research is to improve the performance of text categorization by proposing approaches, which are free from the two problems.
최근 들어 데이터 마이닝 기법을 컴퓨터 네트워크의 침입 탐지에 적용하려는 많은 연구가 진행되고 있다. 본 논문에서는 침입 탐지 분야에서 프로그램 행위가 정상적인지 비정상적인지를 분류하기 위한 방법을 연구한다. 이를 위해, 택스트 마이닝 기법중의 하나인 k 최근접 이웃 (kNN) 분류기를 이용한 새로운 방법을 제안한다. 본 논문에서는 택스트 분류 기법을 적용하기 위해 각각의 시스템 호출을 단어로 간주하고, 시스템 호출의 집합들을 문서로 간주한다. 이러한 문서들은 kNN 분류기를 이용하여 분류된다. 간단한 예제를 통하여 제안하는 절차를 소개한다.
Purpose Social interest in financial statement notes has recently increased. However, contrary to the keen interest in financial statement notes, there is no morphological analyzer for accounting terms, which is why researchers are having considerable difficulty in carrying out research. In this study, we build a morphological analyzer for accounting related text mining techniques. This morphological analyzer can handle accounting terms like financial statements and we expect it to serve as a springboard for growth in the text mining research field. Design/methodology/approach In this study, we build customized korean morphological analyzer to extract proper accounting terms. First, we collect Company's Financial Statement notes, financial information data published by KPFIS(Korea Public Finance Information Service), K-IFRS accounting terms data. Second, we cleaning and tokeninzing and removing stopwords. Third, we customize morphological analyzer using n-gram methodology. Findings Existing morphological analyzer cannot extract accounting terms because it split accounting terms to many nouns. In this study, the new customized morphological analyzer can detect more appropriate accounting terms comparing to the existing morphological analyzer. We found that accounting words that were not detected by existing morphological analyzers were detected in new customized morphological analyzers.
Purpose This study aims to identify user experience factors that can enhance both metaverse utilization and satisfaction based on the honeycomb model. For this we presented two research questions: first, what are the experience factors of metaverse users? Second, do metaverse user experience factors impact satisfaction? Design/methodology/approach To address these questions, a mixed-methodology approach is employed, including text mining techniques to analyze online reviews and quantitative econometric analysis to reveal the relationship between user experience factors and satisfaction. A total of 69,880 reviews and ratings data were collected. Findings The analysis revealed eight metaverse user experience factors: entertainment, operability, virtual reality, immersion, economic activity, visual performance, avatar, and sociality, all of which were found to have a positive impact on user satisfaction.
건설 프로젝트에서 생산되는 대부분의 데이터는 텍스트 기반의 비정형 데이터이다. 계약서, 시방서, RFi 등 수많은 텍스트 문서들을 효과적으로 분석하기 위해서는 텍스트 마이닝과 같은 비정형 텍스트 데이터 분석 방법이 필요하다. 이에 본 연구에서는 과거에 수행되었던 해외건설공사 프로젝트의 입찰 관련 문서들을 대상으로 텍스트 마이닝을 실시하였으며, 그 결과 빈출단어의 유형, 단어들 간의 연관관계, 문서들의 토픽 유형들에 대한 파악이 가능하였다. 본 연구는 텍스트 마이닝을 활용한 해외건설공사 입찰 정보 분석을 통해 비정형 텍스트 데이터를 효과적으로 분석할 수 있는 방안을 제시하였다는 점에서 의의가 있으며, 향후 관련 분야 연구를 확장시킬 수 있는 기반을 마련할 수 있을 것이라 기대한다.
Purpose Social media such as social network services, online forums, and customer reviews have produced a plethora amount of information online. Yet, the information deluge has created both opportunities and challenges at the same time. This research particularly focuses on the challenges in order to discover and track the service defects over time derived by mining publicly available online customer reviews. Design/methodology/approach Synthesizing the streams of research from text analytics, we apply two stages of methods of sentiment analysis and structural topic model incorporating meta-information buried in review texts into the topics. Findings As a result, our study reveals that the research framework effectively leverages textual information to detect, prioritize, and categorize service defects by considering the moving trend over time. Our approach also highlights several implications theoretically and practically of how methods in computational linguistics can offer enriched insights by leveraging the online medium.
Purpose: The primary purpose of this study is to integrate text mining and Quality Function Deployment (QFD) to automatically extract valuable information from customer reviews, thereby establishing a QFD frame- work to confirm genuine customer needs for New Product Development (NPD). Methods: Our approach combines text mining and QFD through topic modeling and sentiment analysis on a large data set of 56,873 customer reviews from Zappos.com, spanning five running shoe brands. This process objectively identifies customer requirements, establishes priorities, and assesses competitive strengths. Results: Through the analysis of customer reviews, the study successfully extracts customer requirements and translates customer experience insights and emotions into quantifiable indicators of competitiveness. Conclusion: The findings obtained from this research offer essential design guidance for new product develop- ment endeavors. Importantly, the significance of these results extends beyond the running shoe industry, presenting broad and promising applications across diverse sectors.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.