• Title/Summary/Keyword: text extraction

Search Result 465, Processing Time 0.023 seconds

How to Enhance an Employee's Organizational Citizenship Behavior (OCB) as a Corporate Strategy

  • KANG, Eungoo;HWANG, Hee-Joong
    • The Journal of Industrial Distribution & Business
    • /
    • v.14 no.1
    • /
    • pp.29-37
    • /
    • 2023
  • Purpose: This study is to explore how to enhance an organizational citizenship behavior (OCB) for private companies, boosting their employees; performance. With OCB in place, businesses won't have to worry about employees engaging in harmful or counterproductive actions. Better coordination will benefit employees' skill sets and the company's overall performance. Research design, data and methodology: We used a data extraction form and present it as an appendix. These forms could demonstrate to the reader what the present authors looked for and how they found it. We also investigated to obtain text datasets whether any extractions were carried out in duplicate, and, if so, whether duplicate abstraction was carried out independently. Results: There are four solutions to boost employees' OCB for HR practitioners: 'Creating an Environment that Supports Constructive OCB', 'Encouraging Productive Behavior in the Workplace and Reward properly, 'Integrating Corporate Citizenship into Performance Evaluations', and 'Training to Use OCB and Educating on its Benefits'. Conclusions: Based on the research findings of the current study, this study strongly concludes that OCB should be encouraged, and employers and employees should collaborate on efforts to boost morale and increase productivity. As a direct result of their efforts, their firms enjoy improved earnings while experiencing reduced overhead costs.

Automated Construction Activities Extraction from Accident Reports Using Deep Neural Network and Natural Language Processing Techniques

  • Do, Quan;Le, Tuyen;Le, Chau
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.744-751
    • /
    • 2022
  • Construction is among the most dangerous industries with numerous accidents occurring at job sites. Following an accident, an investigation report is issued, containing all of the specifics. Analyzing the text information in construction accident reports can help enhance our understanding of historical data and be utilized for accident prevention. However, the conventional method requires a significant amount of time and effort to read and identify crucial information. The previous studies primarily focused on analyzing related objects and causes of accidents rather than the construction activities. This study aims to extract construction activities taken by workers associated with accidents by presenting an automated framework that adopts a deep learning-based approach and natural language processing (NLP) techniques to automatically classify sentences obtained from previous construction accident reports into predefined categories, namely TRADE (i.e., a construction activity before an accident), EVENT (i.e., an accident), and CONSEQUENCE (i.e., the outcome of an accident). The classification model was developed using Convolutional Neural Network (CNN) showed a robust accuracy of 88.7%, indicating that the proposed model is capable of investigating the occurrence of accidents with minimal manual involvement and sophisticated engineering. Also, this study is expected to support safety assessments and build risk management systems.

  • PDF

Sentiment Dictionary Construction Based on Reason-Sentiment Pattern Using Korean Syntax Analysis (한국어 구문분석을 활용한 이유-감성 패턴 기반의 감성사전 구축)

  • Woo Hyun Kim;Heejung Lee
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.46 no.4
    • /
    • pp.142-151
    • /
    • 2023
  • Sentiment analysis is a method used to comprehend feelings, opinions, and attitudes in text, and it is essential for evaluating consumer feedback and social media posts. However, creating sentiment dictionaries, which are necessary for this analysis, is complex and time-consuming because people express their emotions differently depending on the context and domain. In this study, we propose a new method for simplifying this procedure. We utilize syntax analysis of the Korean language to identify and extract sentiment words based on the Reason-Sentiment Pattern, which distinguishes between words expressing feelings and words explaining why those feelings are expressed, making it applicable in various contexts and domains. We also define sentiment words as those with clear polarity, even when used independently and exclude words whose polarity varies with context and domain. This approach enables the extraction of explicit sentiment expressions, enhancing the accuracy of sentiment analysis at the attribute level. Our methodology, validated using Korean cosmetics review datasets from Korean online shopping malls, demonstrates how a sentiment dictionary focused solely on clear polarity words can provide valuable insights for product planners. Understanding the polarity and reasons behind specific attributes enables improvement of product weaknesses and emphasis on strengths. This approach not only reduces dependency on extensive sentiment dictionaries but also offers high accuracy and applicability across various domains.

Perception and Trend Differences between Korea, China, and the US on Vegan Fashion -Using Big Data Analytics- (빅데이터를 이용한 비건 패션 쟁점의 분석 -한국, 중국, 미국을 중심으로-)

  • Jiwoon Jeong;Sojung Yun
    • Journal of the Korean Society of Clothing and Textiles
    • /
    • v.47 no.5
    • /
    • pp.804-821
    • /
    • 2023
  • This study examines current trends and perceptions of veganism and vegan fashion in Korea, China, and the United States. Using big data tools Textom and Ucinet, we conducted cluster analysis between keywords. Further, frequency analysis using keyword extraction and CONCOR analysis obtained the following results. First, the nations' perceptions of veganism and vegan fashion differ significantly. Korea and the United States generally share a similar understanding of vegan fashion. Second, the industrial structures, such as products and businesses, impacted how Korea perceived veganism. Third, owing to its ongoing sociopolitical tensions, the United States views veganism as an ethical consumption method that ties into activism. In contrast, China views veganism as a healthy diet rather than a lifestyle and associates it with Buddhist vegetarianism. This perception is because of their religious history and culinary culture. Fundamentally, this study is meaningful for using big data to extract keywords related to vegan fashion in Korea, China, and the United States. This study deepens our understanding of vegan fashion by comparing perceptions across nations.

Handwritten Indic Digit Recognition using Deep Hybrid Capsule Network

  • Mohammad Reduanul Haque;Rubaiya Hafiz;Mohammad Zahidul Islam;Mohammad Shorif Uddin
    • International Journal of Computer Science & Network Security
    • /
    • v.24 no.2
    • /
    • pp.89-94
    • /
    • 2024
  • Indian subcontinent is a birthplace of multilingual people where documents such as job application form, passport, number plate identification, and so forth is composed of text contents written in different languages/scripts. These scripts may be in the form of different indic numerals in a single document page. Due to this reason, building a generic recognizer that is capable of recognizing handwritten indic digits written by diverse writers is needed. Also, a lot of work has been done for various non-Indic numerals particularly, in case of Roman, but, in case of Indic digits, the research is limited. Moreover, most of the research focuses with only on MNIST datasets or with only single datasets, either because of time restraints or because the model is tailored to a specific task. In this work, a hybrid model is proposed to recognize all available indic handwritten digit images using the existing benchmark datasets. The proposed method bridges the automatically learnt features of Capsule Network with hand crafted Bag of Feature (BoF) extraction method. Along the way, we analyze (1) the successes (2) explore whether this method will perform well on more difficult conditions i.e. noise, color, affine transformations, intra-class variation, natural scenes. Experimental results show that the hybrid method gives better accuracy in comparison with Capsule Network.

A Machine Learning Approach for Named Entity Recognition in Classical Arabic Natural Language Processing

  • Ramzi Salah;Muaadh Mukred;Lailatul Qadri binti Zakaria;Fuad A. M. Al-Yarimi
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.10
    • /
    • pp.2895-2919
    • /
    • 2024
  • A key element of many Natural Language Processing (NLP) applications is Named Entity Recognition (NER). It involves categorizing and identifying text into separate categories, such as identifying a location or an individual's name. Arabic NER (ANER) is also utilized in numerous other Arabic NLP (ANLP) tasks, such as Machine Translation (MT), Question Answering (QA), and Information Extraction (IE). ANER systems can often be classified into three major groups: rule-based, Machine Learning (ML), and hybrid. This study focuses on examining ML-based ANER developments, particularly in the context of Classical Arabic, which presents unique challenges due to its complex morphological structure and limited linguistic resources. We propose a supervised approach that integrates word-level, morphological, and knowledge-based features to improve NER performance for Classical Arabic. Our method was evaluated on the CANERCorpus, a specialized dataset containing annotated texts from Classical Arabic literature. The Naive Bayes (NB) approach achieved an F-measure of 80%, with precision and recall levels at 86% and 75%, respectively. These results indicate a significant improvement over traditional methods, particularly in dealing with the intricate structure of Classical Arabic. The study highlights the potential of ML in overcoming the challenges of ANER and provides directions for further research in this domain.

Applied Practices on Digital Historical Data Transformation based on Intangible Cultural Heritage with Metaverse Approach

  • Hyeon-Uk Jeong;Janghwan Kim;Jihoon Kong;R. Young Chul Kim
    • International journal of advanced smart convergence
    • /
    • v.13 no.3
    • /
    • pp.279-286
    • /
    • 2024
  • The preservation and transmission of intangible cultural heritage, such as traditional martial arts, have historically relied on manual processes that are both resource-intensive and costly. Due to budget limitations, many of these cultural assets are at risk of deterioration or remain hidden in museum storage, inaccessible to the public. To address these challenges, we propose a Digital Historical Data Transformation mechanism utilizing metaverse development techniques. This innovative approach converts 2D images into 3D representations, allowing for the extraction and visualization of associated actions in a three-dimensional space. By applying this methodology to the "Muyedobotongji," a classic text on traditional martial arts, we aim to digitally preserve these practices in a way that is both immersive and interactive. The transformation of static 2D images into dynamic 3D visualizations will not only enhance the restoration process but also make these cultural assets more accessible and engaging for future generations. This digital approach promises a more efficient and sustainable means of preserving intangible cultural heritage, ensuring that these traditions continue to thrive in the modern world.

Stock Price Prediction by Utilizing Category Neutral Terms: Text Mining Approach (카테고리 중립 단어 활용을 통한 주가 예측 방안: 텍스트 마이닝 활용)

  • Lee, Minsik;Lee, Hong Joo
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.2
    • /
    • pp.123-138
    • /
    • 2017
  • Since the stock market is driven by the expectation of traders, studies have been conducted to predict stock price movements through analysis of various sources of text data. In order to predict stock price movements, research has been conducted not only on the relationship between text data and fluctuations in stock prices, but also on the trading stocks based on news articles and social media responses. Studies that predict the movements of stock prices have also applied classification algorithms with constructing term-document matrix in the same way as other text mining approaches. Because the document contains a lot of words, it is better to select words that contribute more for building a term-document matrix. Based on the frequency of words, words that show too little frequency or importance are removed. It also selects words according to their contribution by measuring the degree to which a word contributes to correctly classifying a document. The basic idea of constructing a term-document matrix was to collect all the documents to be analyzed and to select and use the words that have an influence on the classification. In this study, we analyze the documents for each individual item and select the words that are irrelevant for all categories as neutral words. We extract the words around the selected neutral word and use it to generate the term-document matrix. The neutral word itself starts with the idea that the stock movement is less related to the existence of the neutral words, and that the surrounding words of the neutral word are more likely to affect the stock price movements. And apply it to the algorithm that classifies the stock price fluctuations with the generated term-document matrix. In this study, we firstly removed stop words and selected neutral words for each stock. And we used a method to exclude words that are included in news articles for other stocks among the selected words. Through the online news portal, we collected four months of news articles on the top 10 market cap stocks. We split the news articles into 3 month news data as training data and apply the remaining one month news articles to the model to predict the stock price movements of the next day. We used SVM, Boosting and Random Forest for building models and predicting the movements of stock prices. The stock market opened for four months (2016/02/01 ~ 2016/05/31) for a total of 80 days, using the initial 60 days as a training set and the remaining 20 days as a test set. The proposed word - based algorithm in this study showed better classification performance than the word selection method based on sparsity. This study predicted stock price volatility by collecting and analyzing news articles of the top 10 stocks in market cap. We used the term - document matrix based classification model to estimate the stock price fluctuations and compared the performance of the existing sparse - based word extraction method and the suggested method of removing words from the term - document matrix. The suggested method differs from the word extraction method in that it uses not only the news articles for the corresponding stock but also other news items to determine the words to extract. In other words, it removed not only the words that appeared in all the increase and decrease but also the words that appeared common in the news for other stocks. When the prediction accuracy was compared, the suggested method showed higher accuracy. The limitation of this study is that the stock price prediction was set up to classify the rise and fall, and the experiment was conducted only for the top ten stocks. The 10 stocks used in the experiment do not represent the entire stock market. In addition, it is difficult to show the investment performance because stock price fluctuation and profit rate may be different. Therefore, it is necessary to study the research using more stocks and the yield prediction through trading simulation.

Text Mining-Based Emerging Trend Analysis for the Aviation Industry (항공산업 미래유망분야 선정을 위한 텍스트 마이닝 기반의 트렌드 분석)

  • Kim, Hyun-Jung;Jo, Nam-Ok;Shin, Kyung-Shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.1
    • /
    • pp.65-82
    • /
    • 2015
  • Recently, there has been a surge of interest in finding core issues and analyzing emerging trends for the future. This represents efforts to devise national strategies and policies based on the selection of promising areas that can create economic and social added value. The existing studies, including those dedicated to the discovery of future promising fields, have mostly been dependent on qualitative research methods such as literature review and expert judgement. Deriving results from large amounts of information under this approach is both costly and time consuming. Efforts have been made to make up for the weaknesses of the conventional qualitative analysis approach designed to select key promising areas through discovery of future core issues and emerging trend analysis in various areas of academic research. There needs to be a paradigm shift in toward implementing qualitative research methods along with quantitative research methods like text mining in a mutually complementary manner. The change is to ensure objective and practical emerging trend analysis results based on large amounts of data. However, even such studies have had shortcoming related to their dependence on simple keywords for analysis, which makes it difficult to derive meaning from data. Besides, no study has been carried out so far to develop core issues and analyze emerging trends in special domains like the aviation industry. The change used to implement recent studies is being witnessed in various areas such as the steel industry, the information and communications technology industry, the construction industry in architectural engineering and so on. This study focused on retrieving aviation-related core issues and emerging trends from overall research papers pertaining to aviation through text mining, which is one of the big data analysis techniques. In this manner, the promising future areas for the air transport industry are selected based on objective data from aviation-related research papers. In order to compensate for the difficulties in grasping the meaning of single words in emerging trend analysis at keyword levels, this study will adopt topic analysis, which is a technique used to find out general themes latent in text document sets. The analysis will lead to the extraction of topics, which represent keyword sets, thereby discovering core issues and conducting emerging trend analysis. Based on the issues, it identified aviation-related research trends and selected the promising areas for the future. Research on core issue retrieval and emerging trend analysis for the aviation industry based on big data analysis is still in its incipient stages. So, the analysis targets for this study are restricted to data from aviation-related research papers. However, it has significance in that it prepared a quantitative analysis model for continuously monitoring the derived core issues and presenting directions regarding the areas with good prospects for the future. In the future, the scope is slated to expand to cover relevant domestic or international news articles and bidding information as well, thus increasing the reliability of analysis results. On the basis of the topic analysis results, core issues for the aviation industry will be determined. Then, emerging trend analysis for the issues will be implemented by year in order to identify the changes they undergo in time series. Through these procedures, this study aims to prepare a system for developing key promising areas for the future aviation industry as well as for ensuring rapid response. Additionally, the promising areas selected based on the aforementioned results and the analysis of pertinent policy research reports will be compared with the areas in which the actual government investments are made. The results from this comparative analysis are expected to make useful reference materials for future policy development and budget establishment.

Trends Analysis on Research Articles of the Sharing Economy through a Meta Study Based on Big Data Analytics (빅데이터 분석 기반의 메타스터디를 통해 본 공유경제에 대한 학술연구 동향 분석)

  • Kim, Ki-youn
    • Journal of Internet Computing and Services
    • /
    • v.21 no.4
    • /
    • pp.97-107
    • /
    • 2020
  • This study aims to conduct a comprehensive meta-study from the perspective of content analysis to explore trends in Korean academic research on the sharing economy by using the big data analytics. Comprehensive meta-analysis methodology can examine the entire set of research results historically and wholly to illuminate the tendency or properties of the overall research trend. Academic research related to the sharing economy first appeared in the year in which Professor Lawrence Lessig introduced the concept of the sharing economy to the world in 2008, but research began in earnest in 2013. In particular, between 2006 and 2008, research improved dramatically. In order to grasp the overall flow of domestic academic research of trends, 8 years of papers from 2013 to the present have been selected as target analysis papers, focusing on titles, keywords, and abstracts using database of electronic journals. Big data analysis was performed in the order of cleaning, analysis, and visualization of the collected data to derive research trends and insights by year and type of literature. We used Python3.7 and Textom analysis tools for data preprocessing, text mining, and metrics frequency analysis for key word extraction, and N-gram chart, centrality and social network analysis and CONCOR clustering visualization based on UCINET6/NetDraw, Textom program, the keywords clustered into 8 groups were used to derive the typologies of each research trend. The outcomes of this study will provide useful theoretical insights and guideline to future studies.