• Title/Summary/Keyword: tetraethylorthosilicate

Search Result 66, Processing Time 0.03 seconds

Synthesis and Characterization of Silicon Substituted Hydroxyapatite (Si을 함유하는 Hydroxyapatite의 합성 및 특성 분석)

  • 김수룡;김영희;정상진;류도형
    • Journal of the Korean Ceramic Society
    • /
    • v.38 no.12
    • /
    • pp.1132-1136
    • /
    • 2001
  • A silicon-substituted hydroxyapatite was prepared using tetraethylorthosilicate as a silicon source to obtain a biomaterial having an improved biocompatibility. From the XRD analysis, it was confirmed that a single-phase hydroxyapatite containing silicon was formed without revealing the presence of extra phases related to silicon oxide or other calcium phosphate species. Silicon content was up to 3.32% by weight. Through $\^$29/Si MAS NMR investigation we could confirm the presence of tetrahedral silicate in the framework of hydroxyapatite structure. Substitution of silicon into the hydroxyapatite framework (Ca$\_$10/(PO$_4$)$\_$6-x/(SiO$_4$)$\_$x/(OH)$\_$2-x/ reduced the amount of hydroxyl group to compensate for the extra negative charge of the silicate group, which is confirmed by FT-IR.

  • PDF

Electrocatalytic Reduction of Hydrogen Peroxide on Silver Nanoparticles Stabilized by Amine Grafted Mesoporous SBA-15

  • Vinoba, Mari;Jeong, Soon-Kwan;Bhagiyalakshmi, Margandan;Alagar, Muthukaruppan
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.12
    • /
    • pp.3668-3674
    • /
    • 2010
  • Mesoporous SBA-15 was synthesized using tetraethylorthosilicate (TEOS) as the silica source and Pluronic (P123) as the structure-directing agent. The defective Si-OH groups present in SBA-15 were successively grafted with 3-chloropropyltrimethoxysilane (CPTMS) followed by tris-(2-aminoethyl) amine (TAEA) and/or tetraethylenepentamine (TEPA) for effective immobilization of silver nanoparticles. Grafting of TAEA and/or TEPA amine and immobilization of silver nanoparticles inside the channels of SBA-15 was verified by XRD, TEM, IR and BET techniques. The silver nanoparticles immobilized on TAEA and /or TEPA grafted SBA-15 was subjected for electrocatalytic reduction of hydrogen peroxide ($H_2O_2$). The TEPA stabilized silver nanoparticles show higher efficiency for reduction of $H_2O_2$ than that of TAEA, due to higher number of secondary amine groups present in TEPA. The amperometric analysis indicated that both the Ag/SBA-15/TAEA and Ag/SBA-15/TEPA modified electrodes required lower over-potential and hence possess high sensitivity towards the detection of $H_2O_2$. The reduction peak currents were linearly related to hydrogen peroxide concentration in the range between $3{\times}10^{-4}\;M$ and $2.5{\times}10^{-3}\;M$ with correlation coefficient of 0.997 and detection limit was $3{\times}10^{-4}\;M$.

Studies for Improvement in SiO2 Film Property for Thin Film Transistor (박막트랜지스터 응용을 위한 SiO2 박막 특성 연구)

  • Seo, Chang-Ki;Shim, Myung-Suk;Yi, Junsin
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.6
    • /
    • pp.580-585
    • /
    • 2004
  • Silicon dioxide (SiO$_2$) is widely used as a gate dielectric material for thin film transistors (TFT) and semiconductor devices. In this paper, SiO$_2$ films were grown by APCVD(Atmospheric Pressure chemical vapor deposition) at the high temperature. Experimental investigations were carried out as a function of $O_2$ gas flow ratios from 0 to 200 1pm. This article presents the SiO$_2$ gate dielectric studies in terms of deposition rate, refrative index, FT-IR, C-V for the gate dielectric layer of thin film transistor applications. We also study defect passivation technique for improvement interface or surface properties in thin films. Our passivation technique is Forming Gas Annealing treatment. FGA acts passivation of interface and surface impurity or defects in SiO$_2$ film. We used RTP system for FGA and gained results that reduced surface fixed charge and trap density of midgap value.

Preparation of SiO2-CuO-CeO2 Composite Powders and Its Thin Film Templated with Oxalic Acid

  • Son, Boyoung;Jung, Miewon
    • Korean Journal of Materials Research
    • /
    • v.22 no.10
    • /
    • pp.526-530
    • /
    • 2012
  • Silica-based ceramic-matrix composites have shown promise as advanced materials for many applications such as chemical catalysts, ceramics, pharmaceuticals, and electronics. $SiO_2$-CuO-$CeO_2$ multi-component powders and their thin film, using an oxalic acid template as a chelating agent, have larger surface areas and more uniform pore size distribution than those of inorganic acid catalysts. $SiO_2$-CuO-$CeO_2$ composite powders were synthesized using tetraethylorthosilicate, copper (II) nitrate hemi (pentahydrate), and cerium (III) nitrate hexahydrate with oxalic acid as template or pore-forming agent. The process of thermal evolution, the phase composition, and the surface morphology of these powders were monitored by thermogravimetry-differential thermal analysis (TG-DTA), X-ray diffractometry (XRD), field-emission scanning electron microscopy (FE-SEM), and energy dispersive X-ray spectrometry (EDXS). The mesoporous property of the powders was observed by Brunner-Emmett-Teller surface (BET) analysis. The improved surface area of this powder template with oxalic acid was $371.4m^2/g$. This multi-component thin film on stainless-steel was prepared by sol-gel dip coating with no cracks.

Silica-Pillared H-kenyaites: Interlamellar Base Catalyzed-Reaction of Tetraethlorthosilicate in Water Suspension

  • 권오윤;최상원
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.1
    • /
    • pp.69-75
    • /
    • 1999
  • The silica-pillared H-kenyaites were prepared by interlarmellar base-catalyzed reaction of tetraethylorthosilicate [TEOS, Si(OC2H5)4] intercalated into the interlayer of H-kenyaite. The intercalation of TEOS was conducted by the octylamine preswelling process, resulting in a dramatic increase in gallery height to 24.7 Å. The interlamellar hydrolysis of octylamine-TEOS/H-kenyaite paste were conducted between 10 min and 40 min in 0.00%, 0.05% and 0.10% NH3-water solution respectively, and resulting in siloxane-pillared H-kenyajte with gallery height of 28.2-31.8 Å. The calcination of samples at 538 ℃ resulted in silica-pillared H-kenyaites with a large surface areas between 411 m2/g and 885 m2/g, depending on the aging time and NH3 concentration. Samples with optimum specific surface areas and well ordered-basal spacing were obtained by reaction between 10 min and 40 min in pure water and 0.05% NH3-water solution. Mesoporous samples with narrow pore size distribution were also prepared by reaction for 10-40 min in 0.05% NH3 solution. Rapid interlamellar reaction of TEOS in pure water showed that intercalated octylamine itself could act as a base catalyst during interlamellar polycondensation of TEOS.

Changes in the Moisture Stability of $CaS:Eu^{2+}$ Phosphors with Surface Coating Methods

  • Yoo, Sun-Hwa;Kim, Chang-Keun
    • Macromolecular Research
    • /
    • v.17 no.11
    • /
    • pp.907-911
    • /
    • 2009
  • To improve the moisture stability of the $CaS:Eu^{2+}$ red phosphor, surface coatings with silica nanoparticles were performed using five different methods, i.e., $P_1$, $P_2$, $P_3$, $P_4$, and $P_5$. The phosphors were coated with silica nanoparticles using a dip coating method ($P_1$) and sol-gel method ($P_2$). The phosphors were coated using a solution containing silica nanoparticles and poly(1-vinyl-2-pyrrolidone), PVP, $(P_3$). The phosphors were also coated with silica nanoparticles by reacting with the 1-vinyl-2-pyrrolidone (VP) monomer ($P_4$) or by reacting with mixtures containing VP and tetraethylorthosilicate ($P_5$). A decrease in the photoluminescence (PL) intensity was observed regardless of the coating methods. However, the moisture stability of the phosphors was enhanced by the coating when aged in a temperature-controlled humidity chamber. Among these methods, the $P_4$ (or $P_5$) method exhibited the greatest increase in moisture stability of the phosphors. The coated phosphors showed a relatively constant intensity with aging time, whereas the uncoated phosphor showed a decrease.

Alumimium Titanate-Mullite Composites : Part1,Thermal Durability (Alumimium Titanate-Mullite 복합체: Part1, 열적 내구성)

  • Kim, Ik-Jin;Gang, Won-Ho;Go, Yeong-Sin
    • Korean Journal of Materials Research
    • /
    • v.3 no.6
    • /
    • pp.624-631
    • /
    • 1993
  • The composites in the system aluminium titanate-mullite were synthesized by stepwise alkoxide hydrolysis of tetraethylorthosilicate, Si(OCLH5), and titaniumtetraethoxide, $Ti(OC_{2}H_{5})_4$ in $Al_{2}O_{3}$ ethanolic colloidal solution. All particles produced by sol-gel-process were amorphous, monodispesed and had a narrow particle size distribution. Sintered bodies at $1600 ^{\circ}C$ for 2h were subjected to prolonged durability tests-on the one hand annealing at the critical decomposition temperature of $1100 ^{\circ}C$ for lOOh and on the other cyclic thermal shock between 750 and $1400 ^{\circ}C$ for 100h. The best thermal durability was achieved by a composition containing 70 and 80 vol% aluminium titanate, which showed little change in microstructure and thermal expansion cycles during the tests. The microstructural degradation of samples studied using scanning electron microscopy, X-ray diffraction, and dilatometry, was presented here. The study was conducted in order to predict the service life of aluminium titanate-mullite ceramics formed by this processing route.

  • PDF

Silica-encapsulated ZnSe Quantum Dots as a Temperature Sensor Media (온도센서용 실리카에 담지된 ZnSe 양자점 소재)

  • Lee, Ae Ri;Park, Sang Joon
    • Applied Chemistry for Engineering
    • /
    • v.26 no.3
    • /
    • pp.362-365
    • /
    • 2015
  • Silica encapsulated ZnSe quantum dots (QDs) were prepared by employing two microemulsion systems: AOT/water/cyclohexane microemulsions containing ZnSe quantum dots with NP5/water/cyclohexane microemulsions containing tetraethylorthosilicate (TEOS). Using this method, cubic zinc blende nanoparticles (3 nm in diameter) were synthesized and encapsulated by silica nanoparticles (20 nm in diameter). The temperature dependence of photoluminescence (PL) for silica-encapsulated ZnSe QDs was investigated to evaluate this material as a temperature sensor media. The fluorescence emission intensity of silica-encapsulated ZnSe nanoparticles (NPs) was decreased with an increase of ambient temperature over the range from $30^{\circ}C$ to $60^{\circ}C$ and a linear relationship between the temperature and the emission intensity was observed. In addition, the temperature dependence of PL intensity for silica-encapsulated ZnSe NPs showed a reversible pattern on ambient temperature. A reversible temperature dependence of the luminescence combined with its insensitivity toward quenching by oxygen due to silica coating established this material as an attractive media for temperature sensor applications.

Effect of proton concentration in TEOS to improve durability of hydrophilic and high light transmittance properties of nanosilica coating (친수 및 높은 광투과 기능을 함유한 나노실리카 코팅액의 내구성 향상을 위한 수소이온 농도에 따른 TEOS의 반응 연구)

  • Lee, Soo;Chan, Sung Il;Hwang, Heon
    • Journal of the Korean Applied Science and Technology
    • /
    • v.33 no.3
    • /
    • pp.483-491
    • /
    • 2016
  • Even though the antifogging property of nanosilica coated glass surface is highly increased due to the hydrophilic hydroxyl groups on nanosilica surface, the durability of this property on outdoor glass was diminished rapidly after rain washing. In addition the topology of nanosilica coated glass surface plays very important roles to control an light transmittance or antireflection property. To improve these coating durability and characteristics a hydrophilic nanosilica coating on glass was prepared by coating with 1.5 wt% of nanosilica (Ludox) suspension in the presence of hydrolyzed tetraethylorthosilicate (TEOS). The optimum hydrolysis condition of TEOS in acidic or basic aqueous solution was also examined by contact angle measurement. The final transparent hydrophilic coating layer coated with nanosilica-TEOS in acidic condition (pH=4) showed much improved durability of hydrophilic surface as well as higher visible light transmittance than original uncoated glass by 2 % point.

ILD CMP 공정에서 실리콘 산화막의 기계적 성질이 Scratch 발생에 미치는 영향

  • Jo, Byeong-Jun;Gwon, Tae-Yeong;Kim, Hyeok-Min;Park, Jin-Gu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.23-23
    • /
    • 2011
  • Chemical-Mechanical Planarization (CMP) 공정이란 화학적 반응 및 기계적인 힘이 복합적으로 작용하여 표면을 평탄화하는 공정이다. 이러한 CMP 공정은 반도체 산업에서 회로의 고집적화와 다층구조를 형성하기 위하여 도입되었으며 반도체 제조를 위한 필수공정으로 그 중요성이 강조되고 있다. 특히 최근에는 Inter-Level Dielectric (ILD)의 형성과 Shallow Trench Isolation (STI) 공정에서실리콘 산화막을 평탄화하기 위한 CMP 공정에 대해 연구가 활발히 이루어지고 있다. 그러나 CMP 공정 후 scratch, pitting corrosion, contamination 등의 Defect가 발생하는 문제점이 존재한다. 이 중에서도 scratch는 기계적, 열적 스트레스에 의해 생성된 패드의 잔해, 슬러리의 잔유물, 응집된 입자 등에 의해 표면에 형성된다. 반도체 공정에서는 다양한 종류의 실리콘 산화막이 사용되고 gks이러한 실리콘 산화막들은 종류에 따라 경도가 다르다. 따라서 실리콘 산화막의 경도에 따른 CMP 공정 및 이로 인한 Scratch 발생에 관한 연구가 필요하다고 할 수 있다. 본 연구에서는 scratch 형성의 거동을 알아보기 위하여 boronphoshposilicate glass (BPSG), plasma enhanced chemical vapor deposition (PECVD) tetraethylorthosilicate (TEOS), high density plasma (HDP) oxide의 3가지 실리콘 산화막의 기계적 성질 및 이에 따른 CMP 공정에 대한 평가를 실시하였다. CMP 공정 후 효율적인 scratch 평가를 위해 브러시를 이용하여 1차 세정을 실시하였으며 습식세정방법(SC-1, DHF)으로 마무리 하였다. Scratch 개수는 Particle counter (Surfscan6200, KLA Tencor, USA)로 측정하였고, 광학현미경을 이용하여 형태를 관찰하였다. Scratch 평가를 위한 CMP 공정은 실험에 사용된 3가지 종류의 실리콘 산화막들의 경도가 서로 다르기 때문에 동등한 실험조건 설정을 위해 동일한 연마량이 관찰되는 조건에서 실시하였다. 실험결과 scratch 종류는 그 형태에 따라 chatter/line/rolling type의 3가지로 분류되었다 BPSG가 다른 종류의 실리콘 산화막에 비해 많은 수에 scratch가 관찰되었으며 line type이 많은 비율을 차지한다는 것을 확인하였다. 또한 CMP 공정에서 압력이 증가함에 따라 chatter type scratch의 길이는 짧아지고 폭이 넓어지는 것을 확인하였다. 본 연구를 통해 실리콘 산화막의 경도에 따른 scratch 형성 원리를 파악하였다.

  • PDF