• Title/Summary/Keyword: tetraethylammonium hydroxide

Search Result 6, Processing Time 0.02 seconds

Near-Net-Shape Forming and Green Properties of Silicon Nitride by Direct Coagulation Casting Technique (직응집성형법을 이용한 질화규소의 실형상 성형공정 및 성형특성)

  • Jung, Yun-Sung;Pagnoux, Cecile;Jung, Yeon-Gil;Paik, Un-Gyu
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.3
    • /
    • pp.299-307
    • /
    • 2002
  • In this proposed study, a new emerging shape forming technique Direct Coagulation Casting(DCC) which enables to fabricate complex-shaped ceramic parts has been investigated using colloid surface chemistry. Various process variables affected by dispersant, coagulation agent and sintering additives, have been evaluated in order to achieve highly concentrated stabilized silicon nitride suspensions. A high solid loading of 51 vol% in the dispersed silicon nitride suspension was prepared with 1.0wt% Tetraethylammonium Hydroxide (TEAH), which obtained a stable silicon nitride suspension with sintering additives $(Al_2O_3\;and\;Y_2O_3)$ in alkaline regions. The addition of hydroxyaluminium diacetate into the suspension, which decomposed at elevated temperatures, led to coagulate of a silicon nitride suspension. In a basic medium, aluminum ions precipitated to aluminum hydroxide $(Al(OH)_3)$, leading to decreased $OH^-$ concentration and, thus, coagulated suspension.

Redox Chemistry and Autoreduction of Non-$\mu$-oxo Dimer-Forming [5,10,15,20-Tetrakis(2,6-dichlorophenyl)porphyrinato] Manganese(III) Chloride by Hydroxide Ion

  • 전승원;이효경;최용국
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.10
    • /
    • pp.929-934
    • /
    • 1996
  • The electrochemistry and the reaction of non-μ-oxo dimer-forming [5,10,15,20-tetrakis(2,6-dichlorophenyl)porphyrinato] manganese(Ⅲ) chloride [(Cl8TPP)MnⅢCl] with tetraethylammonium hydroxide in water [-OH(H2O)] have been investigated by electrochemical and spectroscopic methods under anaerobic conditions. The stronger autoreduction of (C18TPP)MnⅢCl by -OH(H2O) in comparison with (Me12TPP)MnⅢCl by -OH(CH3OH) in MeCN is explained as the influence of electronic effects on substituted phenyl groups bonded to meso-position of porphyrin ring and the positive shift of reduction potential (-0.11 V) for (C18TPP)MnⅢCl. The autoreduction of manganese(Ⅲ) porphyrin to manganese (Ⅱ) by this process is only observed when one axial position is occupied by a ligating solvent and OH- coordinates the other axial site. The results are discussed in relation to the mechanisms for the reduction of manganese(Ⅲ) porphyrin.

A Facile Synthesis of SAPO-34 Molecular Sieves with Microwave Irradiation in Wide Reaction Conditions

  • Jun, Jong-Won;Lee, Ji-Sun;Seok, Hwi-Young;Chang, Jong-San;Hwang, Jin-Soo;Jhung, Sung-Hwa
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.1957-1964
    • /
    • 2011
  • Various reaction conditions uding temperature, time and type and concentration of templates have been changed in order to facilely synthesize, especially with microwave (MW) heating, SAPO-34 molecular sieves. SAPO-34 molecular sieve can be synthesized rapidly with microwave irradiation from a gel containing tetraethylammonium hydroxide (TEAOH) as a template. However, other several templating molecules lead to SAPO-5 molecular sieve under microwave irradiation even though SAPO-34 is obtained by conventional electric synthesis from the same reactant gels. Moreover, SAPO-34 can be obtained more easily by increasing the TEAOH or silica concentration or by increasing the reaction temperature. SAPO-34 can be obtained within 5 min in a selected condition (high temperature of 210 $^{\circ}C$) with microwave heating, which may lead to a continuous production of the important material. SAPO-34 synthesized by microwave irradiation is homogeneous and small in size and shows acidity and a stable performance in the dehydration of methanol and 2-butanol to olefins, suggesting potential applications in acid catalysis.

Dehydration of D-xylose over SAPO Catalysts Synthesized with Various Structure Directing Agents (다양한 구조 유도제로 합성된 SAPO촉매를 이용한 자일로오스의 탈수화반응)

  • Kim, Saet Byul;You, Su Jin;Kim, Yong Tae;Chae, Ho-Jeong;Jeong, Soon-Yong;Park, Eun Duck
    • Korean Chemical Engineering Research
    • /
    • v.48 no.6
    • /
    • pp.684-689
    • /
    • 2010
  • We synthesized a variety of SAPO catalysts with various structure directing agents by the hydrothermal method and applied them to the D-xylose dehydration. Single or mixtures of organic amines, viz. tetraethylammonium hydroxide(TEAOH), dipropylamine(DPA), diethylamine(DEA), morpholine and diethanolamine(DEtA) were used as structure directing agents. The $N_2$-isotherm, $NH_3$-temperature programmed desorption(TPD) and temperature programmed oxidation(TPO) were conducted to characterize SAPO catalysts. Among tested SAPO catalysts, the SAPO-34 synthesized with morpholine showed the highest furfural yield. The external surface area as well as the surface concentration of acid sites appeared to affect the catalytic activity for the dehydration of xylose into furfural.

Effects of Acid Treatment of SAPO-34 on the Catalytic Lifetime and Light Olefin Selectivity during DTO Reaction (DTO 반응에서 촉매수명과 경질 올레핀 선택도에 미치는 SAPO-34의 산 처리 효과)

  • Choi, Ki-Hwan;Lee, Dong-Hee;Kim, Hyo-Sub;Park, Chu-Sik;Kim, Young-Ho
    • Applied Chemistry for Engineering
    • /
    • v.26 no.2
    • /
    • pp.217-223
    • /
    • 2015
  • Effects of the post-acid treatment of SAPO-34 sample by hydrochloric acid were investigated to enhance the catalytic performance in DTO reaction. Uniformly sized SAPO-34 samples with cubic-like morphology were prepared by hydrothermal method using TEAOH and DEA as the structure directing agents. It was modified in terms of the HCl concentration and treating time. As a result, the total surface area and micropore volume for the well modified samples increased and the total acid site was somewhat decreased along with the erosion of the external surface. Especially, the catalytic lifetime and light olefins selectivity for acid treated SAPO-0.2 M (3 h) samples were considerably enhanced compared with those of untreated SAPO-34 samples. It indicates that the deactivation by coke formation proceeds mainly at the pore entrance on the external surface. Therefore, the acid treatment was confirmed to be a simple method which can significantly improve the catalytic performance by modifying the external surface of SAPO-34 catalyst.

The Effect of Crystal Size of SAPO-34 Synthesized Using Various Structure Directing Agents for MTO Reaction (다양한 구조 유도제로써 합성된 SAPO-34의 결정크기가 메탄올로부터 올레핀 전환반응(MTO)에 미치는 영향)

  • Song, Young-Ha;Chae, Ho-Jeong;Jeong, Kwang-Eun;Kim, Chul-Ung;Shin, Chae-Ho;Jeong, Soon-Yong
    • Applied Chemistry for Engineering
    • /
    • v.19 no.5
    • /
    • pp.559-567
    • /
    • 2008
  • SAPO-34 is a well-known catalyst for methanol to olefins (MTO) process, but is rapidly deactivated by coke formation. It is necessary to improve the catalyst lifetime of SAPO-34 for MTO process. In the present work, SAPO-34 catalysts were synthesized with a variety of structure directing agent, and the physicochemical properties of the catalysts were examined by $N_2$-isotherm, XRD, SEM, and $NH_3$-TPD. It was found that mixed structure directing agents, especially DEA and TEAOH, gave well developed SAPO-34 crystal structure and reduced the crystal size and moderated acidity of SAPO-34 under the same synthetic conditions as that of various structure directing agents. Also, we could find that SAPO-34 catalyst prepared by mixed templates of DEA and TEAOH had the superior catalytic activity and the longer lifetime in MTO reaction.