Dehydration of D-xylose over SAPO Catalysts Synthesized with Various Structure Directing Agents

다양한 구조 유도제로 합성된 SAPO촉매를 이용한 자일로오스의 탈수화반응

  • Kim, Saet Byul (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • You, Su Jin (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Kim, Yong Tae (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University) ;
  • Chae, Ho-Jeong (Green Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Jeong, Soon-Yong (Green Chemistry Research Division, Korea Research Institute of Chemical Technology) ;
  • Park, Eun Duck (Division of Energy Systems Research and Division of Chemical Engineering and Materials Engineering, Ajou University)
  • 김샛별 (아주대학교 에너지시스템학부, 화공.신소재공학부) ;
  • 유수진 (아주대학교 에너지시스템학부, 화공.신소재공학부) ;
  • 김용태 (아주대학교 에너지시스템학부, 화공.신소재공학부) ;
  • 채호정 (한국화학연구원 그린화학연구단) ;
  • 정순용 (한국화학연구원 그린화학연구단) ;
  • 박은덕 (아주대학교 에너지시스템학부, 화공.신소재공학부)
  • Received : 2010.05.12
  • Accepted : 2010.06.01
  • Published : 2010.12.31

Abstract

We synthesized a variety of SAPO catalysts with various structure directing agents by the hydrothermal method and applied them to the D-xylose dehydration. Single or mixtures of organic amines, viz. tetraethylammonium hydroxide(TEAOH), dipropylamine(DPA), diethylamine(DEA), morpholine and diethanolamine(DEtA) were used as structure directing agents. The $N_2$-isotherm, $NH_3$-temperature programmed desorption(TPD) and temperature programmed oxidation(TPO) were conducted to characterize SAPO catalysts. Among tested SAPO catalysts, the SAPO-34 synthesized with morpholine showed the highest furfural yield. The external surface area as well as the surface concentration of acid sites appeared to affect the catalytic activity for the dehydration of xylose into furfural.

본 연구에서는 다양한 구조 유도제로 합성된 SAPO촉매를 이용하여 자일로오스의 탈수화 반응을 진행하였다. 구조 유도제로는 테트라에틸암모늄수산화물(TEAOH), 디프로필아민(DPA), 디에틸아민(DEA), 몰포린(Morpholine) 그리고 디에탄올아민(DEtA)을 사용하였다. 촉매의 특성을 파악하기 위하여 질소 흡착-탈착 등온선, 암모니아 승온탈착($NH_3$-TPD), 그리고 승온산화분석(TPO)을 이용하였다. 구조 유도제로 몰포린(Morpholine)을 사용하여 제조한 SAPO-34를 촉매로 사용하였을 경우 사용한 촉매중에서 푸르푸랄 수율이 가장 높았다. 고체산 촉매의 외부 표면적과 산농도가 자일로오스의 탈수화 반응에 영향을 주는 것으로 나타났다.

Keywords

References

  1. Lichtenthaler, F. W., "Towards Improving the Utility of Ketoses as Organic Raw Materials," Carbohydr. Res., 313, 69-89(1998). https://doi.org/10.1016/S0008-6215(98)00222-5
  2. Moreau, C., Belgacem, M. N. and Gandini, A., "Recent Catalytic Advances in the Chemistry of Substituted Furans from Carbohydrates and in the Ensuing Polymers," Top. Catal., 27, 11-30 (2004). https://doi.org/10.1023/B:TOCA.0000013537.13540.0e
  3. Dias, A. S., Pillinger, M. and Valente, A. A., "Dehydration of Xylose into Furfural over Micro-Mesoporous Sulfonic Acid Catalysts," J. Catal., 229, 414-423(2005). https://doi.org/10.1016/j.jcat.2004.11.016
  4. Lavarack, B. P., Griffin, G. J. and Rodmanc, D., "The Acid Hydrolysis of Sugarcane Bagasse Hemicellulose to Produce Xylose, Arabinose, Glucose and Other Products," Biomass Bioenerg., 23, 367-380(2002). https://doi.org/10.1016/S0961-9534(02)00066-1
  5. Demirbas, A., "Furfural Production from Fruit Shells by Acid-Catalyzed Hydrolysis," Energy Sources Part A-Recovery Util. Environ. Eff., 28, 157-165(2006). https://doi.org/10.1080/009083190889816
  6. Sangarunlert, W., Piumsomboon, P. and Ngamprasertsith, S., "Furfural Production by Acid Hydrolysis and Supercritical Carbon Dioxide Extraction from Rice Husk," Korean J. Chem. Eng., 24, 936-941(2007). https://doi.org/10.1007/s11814-007-0101-z
  7. Vazquez, M., Oliva, M., Tellez-Luis, S. J. and Ramirez, J. A., "Hydrolysis of Sorghum Straw using Phosphoric Acid: Evaluation of Furfural Production," Bioresour. Technol., 98, 3053-3060 (2007). https://doi.org/10.1016/j.biortech.2006.10.017
  8. Moreau, C., Durand, R., Peyron, D., Duhamet, J. and Rivalier, P., "Selective Preparation of Furfural from Xylose over Microporous Solid Acid Catalysts," Ind. Crop. Prod., 7, 95-99(1998). https://doi.org/10.1016/S0926-6690(97)00037-X
  9. Lima, S., Pillinger, M. and Valente, A. A., "Dehydration of D-xylose into Furfural Catalysed by Solid Acids Derived from the Layered Zeolite Nu-6(1)," Catal. Commun., 9, 2144-2148(2008). https://doi.org/10.1016/j.catcom.2008.04.016
  10. Dias, A. S., Pillinger, M. and Valente, A. A., "Liquid Phase Dehydration of D-xylose in the Presence of Keggin-type Heteropoly-acids," Appl. Catal. A, 285, 126-131(2005). https://doi.org/10.1016/j.apcata.2005.02.016
  11. Dias, A. S., Lima, S., Brandao, P., Pillinger, M., Rocha, J. and Valente, A. A., "Liquid-phase Dehydration of D-xylose over Microporous and Mesoporous Niobium Silicates," Catal. Lett., 108, 179-186(2006). https://doi.org/10.1007/s10562-006-0046-6
  12. Dias, A. S., Pillinger, M. and Valente, A. A., "Modified Versions of Sulfated Zirconia as Catalysts for the Conversion of Xylose to Furfural," Catal. Lett., 114, 151-160(2007). https://doi.org/10.1007/s10562-007-9052-6
  13. Lima, S., Fernandes, A., Antunes, M. M., Pillinger, M, Ribeiro, F. and Valente, A. A., "Dehydration of Xylose into Furfural in the Presence of Crystalline Microporous Silicoaluminophosphates," Catal. Lett., 135, 41-47(2010). https://doi.org/10.1007/s10562-010-0259-6
  14. O'Neill, R., Ahmad, M. N., Vanoye, L. and Aiouache, F., "Kinetics of Aqueous Phase Dehydration of Xylose into Furfural Catalyzed by ZSM-5 Zeolite," Ind. Eng. Chem. Res., 48, 4300-4306(2009). https://doi.org/10.1021/ie801599k
  15. Song, Y. H., Chae, H. J., Jeong, K. E., Kim, C. U., Shin, C. H., and Jeong, S. Y., "The Effect of Crystal Size of SAPO-34 Synthesized Using Various Structure Directing Agents for MTO Reaction," J. Korean Ind. Chem., 19, 559-567(2008).
  16. Chheda, J. N. and Dumesic, J. A., "An Overview of Dehydration, Aldol-Condensation and Hydrogenation Processes for Production of Liquid Alkanes from Biomass-derived Carbohydrates," Catal. Today, 123, 59-70(2007). https://doi.org/10.1016/j.cattod.2006.12.006
  17. Chae, H. J., Park, I. J., Song, Y. H., Jeong, K. E., Kim, C. U., Shin, C. H. and Jeong, S. Y., "Physicochemical Characteristics of SAPO-34 Molecular Sieves Synthesized with Mixed Templates as MTO Catalysts," J. Nanosci. Nanotechnol., 9, 1-8(2009). https://doi.org/10.1166/jnn.2009.J01a
  18. Lippens, B. C., Linsen, B. G. and Boer, J. H. D., "Studies on Pore System in Catalysis I. The Adsorption of Nitrogen; Apparatus and Calculation," J. Catal. 3, 32-37(1964). https://doi.org/10.1016/0021-9517(64)90089-2
  19. Liu, G., Tian, P., Zhang, Y., Li, J., Xu, L., Meng, S. and Liu, Z., "Synthesis of SAPO-34 Templated by Diethylamine: Crystallization Process and Si Distribution in the Crystals," Microp. Mesop. Mater., 114, 416-423(2008). https://doi.org/10.1016/j.micromeso.2008.01.030
  20. Lonyi, F. and Valyon, J., "On the Interpretation of $NH_3$-TPD Patterns of H-ZSM-5 and H-Mordenite," Microp. Mesop. Mater., 47, 293-301(2001). https://doi.org/10.1016/S1387-1811(01)00389-4
  21. Tan, J., Liu, Z., Bao, X., Liu, X., Han, X., He, C. and Zhai, R., "Crystallization and Si Incorporation Mechanisms of SAPO-34," Microp. Mesop. Mater., 53, 97-108(2002). https://doi.org/10.1016/S1387-1811(02)00329-3