• Title/Summary/Keyword: tetraethoxysilane

Search Result 68, Processing Time 0.025 seconds

Study of Adhesion Phenomena of Alkoxysilane-type Consolidants on Fresh Granites (알콕시 실란계 석재 강화제의 화강암 점착 특성 연구)

  • Kim, Eun-Kyung;Son, Seung-Hwan;Won, Jong-Ok;Kim, Jeong-Jin;Kim, Sa-Dug
    • Journal of Conservation Science
    • /
    • v.23
    • /
    • pp.1-10
    • /
    • 2008
  • Consolidants based on tetraethoxysilane (TEOS) such as alkoxysilanes have been widely used for the consolidation of decaying stone heritages. Low-viscosity alkoxysilanes penetrate inside the decaying stone and polymerize within the porous structure of the decaying stone, significantly increasing the cohesion of the material. However, TEOS-based consolidants suffer from practical drawbacks, such as crack formation of the gel during the drying phase due to the developed capillary force, which is typical for TEOS-based consolidants. We prepared new consolidants TEOS-based consolidants containing flexible (3-glycidoxypropyl)trimethoxysilane (GPTMS) and silica nanoparticles (or polyhedral oligomeric silsesquioxanes (POSS)) in order to reduce capillary force development during gel drying. Since the consolidants should have a good interaction with the component of the stone in order to connect the isolate grains of decaying stone, the adhesion interaction of the developed consolidants on the surface of the granite was macroscopically investigated by the ISO 2409 cross cutting test. The adhesion interaction decreased with the addition of silica nanoparticle and POSS while it increased with the addition of GPTMS in TEOS solution.

  • PDF

Structural Evolution during the Sol-Gel transition of Tetraethoxysilane (테트라에톡실란의 졸-겔 전이중 구조생성)

  • 노재철;정인재
    • The Korean Journal of Rheology
    • /
    • v.2 no.1
    • /
    • pp.53-59
    • /
    • 1990
  • 물량 및 촉매를 변화시키며 TEOS 용액에 대하여 점도를 측정하였다. 염기성 촉매 를 사용한 TEOS 용액은 구형 입자를 갖는 것으로 나타났다. 적은 초기 물량과 산성 촉매 를 사용한 TEOS 용액은 환원 점도의 실험결과로 미루어 선형의 고분자를 갖고 있는 것으 로 보인다. 반면 많은 물량과 산성폭매를 사용한 TEOS 용액은 많은 가지 사슬을 갖는 비 선형 입자를 형성하는 것으로 사료된다. 적은 물량의 산성촉매에서 생성하는 선형고분자 구 조느 삼중규소연쇄의 리본형태로 생각된다.

  • PDF

A Study on Preparation and Characterization of Mullite Coated Film by Sol-Gel Process (졸-겔법에 의한 Mullite 코팅막의 제조 및 특성에 관한 연구)

  • 이용택;최영우;양중식
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.6
    • /
    • pp.611-619
    • /
    • 1997
  • Optimal Mullite sol was synthesized by sol-gel process using Aluminium sec-butoxide(ASB), Tetraethoxysilane(TEOS) and then, Mullite films were dip-coated with various holding time in sol bath and heat-treated at 130$0^{\circ}C$ above for crystallization. The thickness of coated film increased linearly with holding time in sol bath and average pore size was controllable within 20~30$\AA$.

  • PDF

Characteristics of Polyimide-silica Hybrid Materials Prepared from Alkoxide Precursor Using Sol-gel Process (졸-겔법을 이용하여 알콕사이드 전구체로부터 합성된 Polyimide-silica 혼성체의 특성)

  • Kim, Byoung-Woo;Lee, Sung-Hwan;Kim, Sung-Wan;Park, Jae-Hyun;Kim, Jun-Ho;Park, Seong-Soo;Park, Hee-Chan
    • Journal of the Korean Ceramic Society
    • /
    • v.39 no.11
    • /
    • pp.1063-1068
    • /
    • 2002
  • Polyimide/silica(PI/silica) hybrid materials having physical or chemical bonds between the PI and silica network were prepared using sol-gel process through hydrolysis and polycondensation of tetraethoxysilane with the polyamic Acid(PAA) or end-capped PAA solution. PAA solution was synthesized by ring opening reaction of pyromellitic dianhydride and oxydianiline monomers in dimethyl acetamide solution. End-capped PAA solution was synthesized by the addition of 3-aminopropyltriethoxysilane in PAA solution. PI/silica hybrid samples were characterized by infrared spectroscopy, differential thermogravimetry, X-ray diffractometry, scanning electron microscopy, and tensile tester. It has been demonstrated that the properties of hybrid samples were affected by the silica content and the bond type between PI and silica.

Hard Coatings on Polycarbonate Plate by Sol-Gel Reactions of Silicates and Melamine Derivative (폴리카보네이트 판 위에 Silicates와 Melamine 유도체의 졸-겔 반응을 이용한 하드 코팅)

  • Kim, Se-Ra;Kang, Min-Kyung;Shin, Young-Jae;Oh, Mee-Hye;Yoon, Yeo-Seong;Shin, Jae-Sup
    • Polymer(Korea)
    • /
    • v.31 no.6
    • /
    • pp.485-490
    • /
    • 2007
  • Hard coating was made on a polycarbonate plate using a sol-gel process with a melamine derivative and silicates, and examined as potential substitutes for automobile glass. Methylated poly(melamine-co-formaldehyde), tetraethoxysilane, and phenyltriethoxysilane were used to form a coating solution. The coatings on the polycarbonate plate were deposited using a sol-gel process. Poly(methyl methacrylate) was coated on the surface of polycarbonate in order to improve adhesion property. The optimum conditions and formulation to obtain excellent physical properties of the coating were determined. Adding the melamine derivative to the coating solution, the pencil hardness of the coating was improved. The hardness of a 3H class pencil, excellent abrasion resistance, and surface uniformity were found in the coated polycarbonate surface.

Characteristics of Plasma Polymer Thin Films for Low-dielectric Application

  • Cho, S.J.;Boo, J.H.
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.124-124
    • /
    • 2011
  • This study investigated the interaction of varied plasma power with ultralow-k toluene-tetraethoxysilane (TEOS) hybrid plasma polymer thin films, as well as changing electrical and mechanical properties. The hybrid thin films were deposited on silicon(100) substrates by plasma enhanced chemical vapor deposition (PECVD) system. Toluene and tetraethoxysilane were utilized as organic and inorganic precursors. In order to compare the electrical and the mechanical properties, we grew the hybrid thin films under various conditions such as rf power of plasma, bubbling ratio of TEOS to toluene, and post annealing temperature. The hybrid plasma polymer thin films were characterized by Fourier transform infrared (FT-IR) spectroscopy, atomic force microscopy (AFM), nanoindenter, I-V curves, and capacitance. Also, the hybrid thin films were analyzed by using ellipsometry. The refractive indices varied with the RF power, the bubbling ratio of TEOS to toluene, and the annealing temperature. To analyze their trends of electrical and mechanical properties, the thin films were grown under conditions of various rf powers. The IR spectra showed them to have completely different chemical functionalities from the liquid toluene and TEOS precursors. Also, The SiO peak intensity increased with increasing TEOS bubbling ratio, and the -OH and the CO peak intensities decreased with increasing annealing temperature. The AFM images showed changing of surface roughness that depended on different deposition rf powers. An nanoindenter was used to measure the hardness and Young' modulus and showed that both these values increased as the deposition RF power increased; these values also changed with the bubbling ratio of TEOS to toluene and with the annealing temperature. From the field emission scanning electron microscopy (FE-SEM) results, the thickness of the thin films was determined before and after the annealing, with the thickness shrinkage (%) being measured by using SEM cross-sectional images.

  • PDF

Preparation and Characterization of Hybrid Ozone Resistance Coating Film Using Carbon Nanotube (탄소나노튜브를 이용한 하이브리드 내오존성 코팅 막의 제조 및 특성)

  • Kim, Sung Rae;Lee, Sang Goo;Yang, Jeong Min;Lee, Jong Dae
    • Polymer(Korea)
    • /
    • v.38 no.5
    • /
    • pp.573-579
    • /
    • 2014
  • The effect of synthesis conditions such as carbon nanotube (CNT), 2,2,2-trifluoroethylmethacrylate (3FMA), and composition of organic-inorganic material in ozone resistance and surface characteristics of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 3FMA, various organic materials with acrylate group, and CNT, then bar-coated on substrates using applicator, and densified by UV-curing. It was found that ozone resistance and adhesion of the coating film were strongly dependent upon contents of TEOS, 3FMA, and CNT. Especially, ozone resistance, adhesion, and surface hardness of coating film with CNT were improved, relatively. Ozone resistance of coating film with a high TEOS content was increased, but adhesion was decreased. In addition, it was also found that ozone resistance of coating film was increased with contents of 3FMA. On the other hand, surface hardness was decreased with increase of 3FMA.

Gas Permeation Characteristics of PTMSP-Silica Composite Membranes Using Sol-Gel Process (졸-겔법에 의한 PTMSP-Silica 복합막의 기체 투과 특성)

  • Yoon, Sung-Hyon;Lee, Hyun-Kyung
    • Membrane Journal
    • /
    • v.24 no.6
    • /
    • pp.491-497
    • /
    • 2014
  • PTMSP-silica composite membranes were prepared by addition of 0, 15, 20, and 30 wt% TEOS (tetraethoxysilane), TMOS (tetramethoxysilane), MTMOS (methyltrimethoxysilane), and PTMOS (phenyltrimethoxysilane) contents to PTMSP using sol-gel process. The gas permeability of the composite membranes for $H_2$, $N_2$ and ideal selectivity for $H_2$ over $N_2$ were investigated as a function of alkoxysilane content. The permeabilities for $H_2$ and $N_2$ increased in the range of alkoxysilane contents 0~20 wt%, however decrease the range of 20~30 wt%. The ideal selectivities for $H_2$ over $N_2$ decreased in the range of TEOS and PTMOS contents 0~15 wt%, but increased in the range of 15~30 wt%. When compared to the upper bound of Robeson, PTMSP-silica composite membranes with TEOS content of 30 wt%, MTMOS content of 20 wt% and PTMOS content of 30 wt% turned out to be a simultaneous improvement in ideal selectivity and permeability.

Preparation of UV-curable Ozone Resistance Coating Solutions using Fluoromonomer (불소 단량체를 이용한 자외선 경화형 내 오존성 코팅 막 제조)

  • Lee, Chang Ho;Lee, Sang Goo;Kim, Sung Rae;Lee, Jong Dae
    • Korean Chemical Engineering Research
    • /
    • v.50 no.3
    • /
    • pp.421-426
    • /
    • 2012
  • The effect of synthesis conditions such as various organic material and composition of organic-inorganic material in ozone resistance and surface characteristic of ultraviolet cured organic-inorganic hybrid coating film has been investigated. Organic-inorganic hybrid coating solution was prepared using tetraethoxysilane (TEOS), silane coupling agent methacryloyloxypropyltrimethoxysilane (MPTMS), 2,2,2-trifluoroethylmethacrylate, and various organic materials with acrylate group, bar-coated on substrates using applicator and densified by UV-curing. It was found that ozone resistance and surface hardness of the coating film was increased with contents of TEOS. It was also found that ozone resistance of coating film was increased with contents of 2,2,2-trifluoroethylmethacrylate. On the other hand, surface hardness was decreased with increase of 2,2,2-trifluoroethylmethacrylate. In addition, Surface hardness of coating film was increased with the addition of aliphatic urethane acrylate. It was also found that the transmittance of coating films was not influenced by content of TEOS and 2,2,2-trifluoroethylmethacrylate. In addition, the coating film exhibited high transmittance of above 90%.

Study on Synthesis of Dimethyl Ether Using Silica Membrane Reactor (Silica막 반응기를 이용한 Dimethyl Ether 합성에 관한 연구)

  • Sea Bongkuk;Youn Min-Young;Lee Kew-Ho
    • Membrane Journal
    • /
    • v.15 no.4
    • /
    • pp.330-337
    • /
    • 2005
  • Water selective silica membranes were prepared fur use as membrane reactor for synthesis of dimethyl ether (DME) by methanol dehydration. Silica membranes formed on a Porous SUS tube by ultrasonic spray Pyrolysis (USP) and chemical vapor deposition (CVD) using tetraethoxysilane (TEOS) as precursor. The CVD-derived membranes formed higher level of trade-off line between water permeance and water/methanol selectivity than that of the USP-derived membranes. The membrane reactor possessing water permeance of $1.2\times10^{-7}\;mol\;{\cdot}\;m^{-2}\;{\cdot}\;S^{-1}\;{\cdot}\;Pa^{-1}$ and water/methanol selectivity of 10 exhibited increase in methanol conversion of about $20\%$ comparing to conventional reactor system. These findings led us to conclude that the dehydration membrane reactor simultaneously separating the water vapour produced in the reaction zone was effective in increasing the reaction conversion.