Hard Coatings on Polycarbonate Plate by Sol-Gel Reactions of Silicates and Melamine Derivative

폴리카보네이트 판 위에 Silicates와 Melamine 유도체의 졸-겔 반응을 이용한 하드 코팅

  • Kim, Se-Ra (Department of Chemistry, Chungbuk National University) ;
  • Kang, Min-Kyung (Department of Chemistry, Chungbuk National University) ;
  • Shin, Young-Jae (Department of Electrical Engineering and Computer Science, KAIST) ;
  • Oh, Mee-Hye (Korea Automotive Technology Institute) ;
  • Yoon, Yeo-Seong (Korea Automotive Technology Institute) ;
  • Shin, Jae-Sup (Department of Chemistry, Chungbuk National University)
  • Published : 2007.11.30

Abstract

Hard coating was made on a polycarbonate plate using a sol-gel process with a melamine derivative and silicates, and examined as potential substitutes for automobile glass. Methylated poly(melamine-co-formaldehyde), tetraethoxysilane, and phenyltriethoxysilane were used to form a coating solution. The coatings on the polycarbonate plate were deposited using a sol-gel process. Poly(methyl methacrylate) was coated on the surface of polycarbonate in order to improve adhesion property. The optimum conditions and formulation to obtain excellent physical properties of the coating were determined. Adding the melamine derivative to the coating solution, the pencil hardness of the coating was improved. The hardness of a 3H class pencil, excellent abrasion resistance, and surface uniformity were found in the coated polycarbonate surface.

자동차의 유리를 폴리카보네이트로 대체하기 위하여 폴리카보네이트 판 위에 멜라민 유도체와 실리케이트를 이용하여 졸-겔 과정으로 하드 코팅을 시도하였다. 본 연구에서는 methylated poly(melamine-co-formaldehyde), tetraethoxysilane, phenyltriethoxysilane 등으로부터 졸-겔 과정으로 코팅을 형성하였다. 코팅을 실시하기 전에 코팅의 접착력을 향상시키기 위하여 poly(methyl methacrylate)를 사용하여 폴리카보네이트판 위에 전처리 코팅을 하였다. 가장 우수한 코팅 물성을 나타내는 코팅의 최적 조건을 찾아보았다. 멜라민 유도체를 첨가하였을 때 연필 경도가 증가하였다. 형성된 코팅은 연필 경도 3H의 경도를 나타내었으며, 매우 고른 코팅 표면을 갖고 있었고, 매우 우수한 내마모성을 나타내었다.

Keywords

References

  1. S. K. Medda, D. Kundu, and G. De, J. Non-Cryst, Solids, 318,149 (2003) https://doi.org/10.1016/S0022-3093(02)01862-8
  2. H. S. Yang, O. H. Kwon, J. D. Lee, J. S. Rho, and Y. H. Kim, J. Korean lnd. Eng. Chem., 7, 823 (1996)
  3. Y. T. Lee, D. S. Jeong, and H. J. Jeong, Polymer (Korea), 19, 753 (1995)
  4. H. K. Kim, J. G. Kim, J. A. Yu, and J. W. Hong, J. Korean Ind. Eng. Chem., 12, 287 (2001)
  5. D. Rats, V. Hajek, and L. Martinu, Thin SolId Fllms, 340, 33 (1999)
  6. S. E. Yoon, H. G. Woo, and D. P. Kim, Polymer(Korea), 24, 389 (2000)
  7. T. H. Lee, E. S. Kang, and B. S. Bae, J. Sol-Gel Sci.Techonol., 27, 23 (2003) https://doi.org/10.1023/A:1022671625334
  8. Y. J. Eo, D. J. Kim, B. S. Bae, K. C. Song, T. Y. Lee, and S. W. Song, J. Sol-Gel Sci Techonol., 13, 409 (1998)
  9. D. G. Park, Polym. Sci Technol., 8, 268 (1997)
  10. D. K. Hwang, J. H. Moon, Y. G. Shul, K. T. Jung, D. H. Kim, and D. W. Lee, J. Sol-Gel Sci. Techonol., 26, 783 (2003) https://doi.org/10.1023/A:1020774927773
  11. M. S. Lee and N. J. Jo, J. Sol-Gel Sci: Techonol., 24, 175 (2002)
  12. T. P. Chou and G. Cao, J. Sol-Gel Sci Techonol., 27, 31 (2003) https://doi.org/10.1023/A:1022675809404
  13. J. D. Mackenzie and E. P. Bescher, J. Sol-Gel Sci Techonol., 19, 23 (2000)
  14. Y. J. Ji, H. Y. Kim, Y. S. Yoon, S. W. Lee, and J. S. Shin, J. Adhesion Interface, 6, 10 (2005)
  15. J. Y. Kim, Y. J. Shin, Y. R. Shin, Y. J. Ji, Y. S. Yoon, and J. S. Shin, J. Korean Ind Eng. Chem., 17, 170 (2006)
  16. Y. J. Ji, Y. J. Shin, Y. R. Shin, J. Y. Kim, Y. S. Yoon, and J. S. Shin, J. Adhesion Interface, 7, 10 (2006)
  17. S. V. Levchik, A. I. Balabanovich, G. F. Levchik, and L. Costa, Fire Mster., 21, 75 (1997)
  18. B. K. Kandola, A. R. Horrocks, and S. Horrocks, Fire Mater., 25,153 (2001) https://doi.org/10.1002/1099-1018(200101/02)25:1<1::AID-FAM751>3.0.CO;2-V