Communications for Statistical Applications and Methods
/
제5권1호
/
pp.67-75
/
1998
A new graphical method, named transformed quantize-quantile (TQQ), of a quantize-quantile (Q-Q) Plot is developed for the detection of deviations from the normal distribution. It will be shown that TQQ is helpful for detecting patterns of how points depart from normality. TQQ characteristics of the various kinds of representations are illustrated by a generated sample from a composite of a normal distribution and a clinical example for TQQ is constructed and explained.
In this paper, we show the weak convergence of U-empirical processes for two sample problem. We use the result to show the asymptotic normality for the generalized dodges-Lehmann estimates with the Bahadur representation for quantifies of U-empirical distributions. Also we consider the asymptotic normality for the test statistics in a simple way.
Journal of the Korean Data and Information Science Society
/
제16권2호
/
pp.195-205
/
2005
In decision tree analysis, C4.5 and CART algorithm have some problems of computational complexity and bias on variable selection. But QUEST algorithm solves these problems by dividing the step of variable selection and split point selection. When input variables are continuous, QUEST algorithm uses ANOVA F-test under the assumption of normality and homogeneity of variances. In this paper, we investigate the influence of violation of normality assumption and effect of the transformation of variables in the QUEST algorithm. In the simulation study, we obtained the empirical powers of variable selection and the empirical bias of variable selection after transformation of variables having various type of underlying distributions.
EDF에 근거한 $Cram{\acute{e}}r$-von Mises 통계량을 합교원리를 이용하여 다변량으로 일반화한다. 그리고 제안된 통계량의 귀무가설에서의 극한분포를 적절한 공분산 함수를 가진 가우스 과정의 적분의 형태로 표현하고 통계량의 근사적인 계산방법을 고려한다. 또한 실제 자료에 제안된 통계량을 적용해보고 여러가지 대립가설에서의 검정력을 유사한 통계량과 비교해 본다.
Malkovich & Afifi (1973)는 합교원리 (union-intersection principle)를 이용하여 왜도와 첨도를 다변량으로 일반화하였으나 이는 자료의 차원이 클 경우에는 사용이 용이하지 않다. 본 논문에서는 이러한 단점을 보완하는 이들의 근사통계량을 제안한다. 그리고 제안된 근사통계량, Malkovich & Afifi (1973)의 통 계 량, Mardia(1970)의 왜도와 첨도의 검 정력을 모의실험을 통하여 비교한다.
Communications for Statistical Applications and Methods
/
제7권2호
/
pp.385-392
/
2000
Many tests for multivariate normality are based on the spherical coordinates of the scaled residuals of multivariate observations. Moore and Stubblebine's (1981) Pearson chi-square test is based on the radii of the scaled residuals, or equivalently the sample Mahalanobis distances of the observations from the sample mean vector. The chi-square statistic does not have a limiting chi-square distribution since the unknown parameters are estimated from ungrouped data. We will derive a simple closed form of the Rao-Robson chi-square test statistic and provide a self-contained proof that it has a limiting chi-square distribution. We then provide an illustrative example of application to a real data with a simulation study to show the accuracy in finite sample of the limiting distribution.
Airborne suspended particulate concentration in drilling sites of underground coal mines in Taebaek area was evaluated. And respirable coal dust exposure level was evaluated. Airborne suspended particulate mass include total suspended particle(TSP) and thoracic particle(TPM). TSP (by open-face filter holder) and TPM(by elutriator) concentration were determined by low volume air samplers. Personal air samplers were attached to the coal workers including drillers, coal cutters, and their assistants. Normality and log-normality of TSP, TPM, and respirable dust(RPM) concentration were tested by Kolmogorov-Smirnov one-sample test. Differences of means of TSP, TPM, and RPM concentration were tested by paired t-test. Relation between TSP, TPM, and RPM with pairs were tested by regression test and Pearson's correlation.
수명시간에 대한 모형으로 로그정규분포가 자주 사용되며, 이는 자료의 변환에 의하여 정규성 검정과 동일한 문제로 생각할 수 있다. 따라서 자료의 로그정규성 검정을 위하여, 정규성 검정에 자주 이용되는 Shapiro-Wilk 형태의 검정통계량을 Kaplan-Meier의 product limit 경험분포함수를 이용하여 임의중도절단자료로 일반화한다. Cram er von Mises 통계량을 임의중도절단자료로 일반화한 Koziol과 Green (1976)의 통계량과 비교하였으며 이를 위하여 단순귀무가설을 가정하였다. 중도절단분포에 대한 모형으로는 Koziol과 Green (1976)에서 제시한 모형과 이와 유사한 다른 모형 두 가지를 고려하였다. 검정력 비교 결과 제시한 통계량이 로그정규성 또는 정규성 검정에 더 좋은 검정력을 보여주었으며 검정력은 중도절단분포 모형보다는 자료의 중도절단비율에 영향을 받는다는 것을 볼 수 있었다.
본 논문에서는 여러 개의 독립적인 모집단들 사이에서 상관계수들의 등가성에 대한 퍼뮤테이션 검정을 조사한다. 퍼뮤테이션 검정은 관측값들의 상호교환성에 기초하는 비모수적인 검정 방법이며 상호교환성이란 독립적이고 동일한 확률변수들의 개념을 일반화한 개념이다. 퍼뮤테이션 검정을 사용함으로써 근사적으로 정확한 검정에 가까운 검정을 실시할 수 있다. 퍼뮤테이션 검정은 근사적으로 보수적인 검정만큼의 검정력을 지니며, 표본의 크기가 작거나 정규성 가정이 충족되지 않을 때 유용한 방법이다. 본 논문에서는 먼저 상관계수들의 등가성을 검정하는 모수적인 방법들을 소개하고 이들을 퍼뮤테이션 검정과 비교한다. 끝으로 모든 검정들은 Iris 데이터를 예를 들어 비교된다.
Communications for Statistical Applications and Methods
/
제2권2호
/
pp.1-12
/
1995
Let F be a life distribution with finite mean $\mu$ Then F is said to be in new better then worse than used in expectation (NBWUE(p)) class if $\varphi(u) {\geq} u$ for $0 {\leq}u{\leq}t_0$ and ${\varphi}(u) {\leq} u$ for $t_0< u {\leq} 1$ where ${\varphi}(u)$ is the scaled total-time-on-test transform and $p=F(t_0)$. We propose a testing procedure for $H_0$ : F is exponential against $H_1$ : NBWUE(p), and is not expontial, (or $H_1\;'$ : F is NWBUE (p), and is not exponential) using randomly censored data. Our procedure assumes kmowledge of the proportion p of the population that fail at or before the change-point $\t_0$. Know ledge of $\t_0$ itself is not assumed. The asymptotic normality of the test statistic is established and a Monte Carlo experiment is performed to investigate the speed of convergence of the test statistic to normality. The power of our test is also studied.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.