• Title/Summary/Keyword: test fixture

Search Result 182, Processing Time 0.031 seconds

Safety Estimation and Analysis Study of the Connector for Lighting Fixture Wiring (조명등기구 배선용 커넥터의 안전성 평가 및 분석에 관한 연구)

  • Choi, Chung-Seog
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.541-545
    • /
    • 2009
  • This study evaluated the contact resistance, insulation resistance, withstand voltage characteristics and insertion force, etc., of the wire connector used inside an integrated LITE WAY lighting fixture developed for efficient installation. Since the connector connecting the lighting fixture's internal wires is housed, it is easily connected and separated and has a structure enabling a close-fitting connection. The temperature and time applied to the high temperature characteristics test of the connector are $105^{\circ}C$ and 16 hours, respectively. The measured contact resistance of the high temperature tested connector was 3.258 mV/A, and its measured insulation resistance was greater than $10\;G{\Omega}$ All specimens demonstrated uniform insulation characteristics, which could be seen to be in good condition. From the withstand voltage test results found before and after performing the high temperature operation test on the connector for cable connection, it was confirmed that the withstand voltage characteristics between all terminals were good. The insertion force of the connector connecting the internal wiring averaged 9.67 kgf. It was observed that the insertion force between the plug housing and the female terminal, and that between the plug housing and the male terminal, were 0.680 kgf and 1.27 kgf on average, respectively.

Study on the Effects of the Mounting Direction of Vertically-launched Missiles in Vibration Tests (수직발사 유도탄의 진동시험에서 유도탄 장착방향의 영향에 대한 연구)

  • Lee, Hojun;Kim, Ki-Eun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.3
    • /
    • pp.218-225
    • /
    • 2013
  • Vertically-launched missiles are supported as erected vertically in the vertical launching system of warship, and they should be mounted in the same way when vibration-tested. However, mounting missiles vertically makes a fixture, which is a supporting structure, bulky and heavy so requiring a high-performance exciter. Mounting missiles as laid down horizontally in a vibration test is economical regarding fixture manufacturing and exciter performance, but it makes test results incorrect because the different mounting direction has effects on the test results. A bending moment due to missiles' weight happens to missiles, and resilient mounts, which support missiles in the vertical launch system, deflect differently from the real situation because of the static deflection of these mounts due to missiles' weight. If the resilient mounts supporting missiles have nonlinear force-deflection characteristics, vibration test results become more different from the true results. This paper proposes to support missiles with an additional resilient mount such as a bunge code in order to solve those problems coming from mounting vertically-launched missiles as laid down horizontally in vibration tests. The proposed approach enables to obtain the same test results as in their actual mounting condition even though vertically-launched missiles are mounted in a different direction.

Design and Verification of Shear Buckling Test Fixture for Composite Laminate (복합재 적층판의 전단좌굴시험을 위한 치구 설계 및 검증)

  • Park, Sung-Jun;Ko, Myung-Gyun;Kim, Dong-Gwan;Kim, Sang-Kuk;Moon, Chang-Oh;Kweon, Jin-Hwe;Choi, Jin-Ho
    • Composites Research
    • /
    • v.27 no.4
    • /
    • pp.158-167
    • /
    • 2014
  • Final goal of this research is to establish the database for correlation factors which connects the test and analysis results of shear buckling allowables for composite plate. To accomplish the goal, extensive test and analysis works are required. In this paper, as the first step, a frame-type fixture for shear buckling test was designed and validated through the test and analysis. Final configuration of the fixture were determined via parametric study on the effect of specimen size, cross-sectional dimensions, and number of fastening bolts on the shear buckling load. Results of the study showed the designed frame-type fixture successfully induces the shear buckling of composite plate. However, there were deviations between the test results and analysis results for ideal case under pure shear load, which were mainly caused by the difference in plate sizes for both cases. The difference were larger in the plates with larger hole and simply supported boundary condition. It is concluded from the results that while the designed fixture can be used for the clamped plates with acceptable accuracy, it shows larger difference in the simply supported plates.

A Study on Measurement of Semiconductor Package in RF Regime (RF대역에서의 반도체 package 특성 측정에 관한 연구)

  • 박현일;김기혁;황성우
    • Proceedings of the IEEK Conference
    • /
    • 2000.11b
    • /
    • pp.108-111
    • /
    • 2000
  • The electrical characteristics of MQFP packages have been measured in RF regime. The s-parameter of the lead frame has been measured using the test fixture on which the do-capped package was mounted. A simple lumped equivalent circuit modeling of the lead frame and the test fixture can provide reasonable model parameters up to the frequency of 200 MHz.

  • PDF

Structural Dynamic Modification of Fixture using Antiresonance Frequency Analysis (반공진 진동수 해석에 의한 치구 설계 변경)

  • 김준엽;윤을재
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.2
    • /
    • pp.48-57
    • /
    • 1997
  • The method of antiresonance frequency analysis of multi-input system is proposed. The structural dynamic modification using antiresonance frequency analysis is also applied to reduce the undertest at specimen attachment points on the fixture in environmental vibration test, which is resulted from the inconsistency of antiresonance frequencies. Several computer simulations show that the proposed method can remove the undertest problem which is not removed in conventional vibration test control. And the effectiveness of the method is verified with the impact hammer excitation of aluminium fixture model.

  • PDF

A study on Optimization of Reference Spectrum for Improvement of Fixture Performance in Random Vibration Control (랜덤진동제어에서 치구성능향상을 위한 기준스펙트럼의 최적화에 대한 연구)

  • 김준엽;정의봉
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.1
    • /
    • pp.284-291
    • /
    • 1995
  • This paper proposes a method for determination of optimal reference spectrum in random vibration control. The least square method is used to minimize the spectrum deviation between the specified reference spectrum and spectra at the specimen-mounted points. This method needs only the measured FRF's at the control point and specimen-mounted points in pre-vibration test. Using the proposed method as reference spectrum, it is possible to easily predict spectra at the specimen-mounted points, and also to reduce overtest resulting from dynamic characteristics of shaker and fixture. This method is shown through theoretical and experimental results to be an effective method.

Soil Breakdown Test using Fixture (Fixture를 이용한 토양 절연파괴 실험)

  • Lee, H.G.;Ha, T.H.;Jung, D.H.;Ha, Y.C.;Kim, D.K.;Bae, J.H.
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.384-385
    • /
    • 2007
  • The fault current through the earth originated from a power line ground fault might cause arcing through the soil to an adjacent pipeline, which might bring about not only a catastrophic accident such as gas explosion and oil leakage but also a hazard to the safety of workers responsible for the maintenance and repair of the pipeline. In this paper we experimented on the soil breakdown test using the fixture and outlined the standards for the separation distance of a buried pipeline adjacent to the power line tower.

  • PDF

EFFICIENT DESIGN OF CAPACITOR DISCHARGE IMPULSE MAGNETIZER SYSTEM FOR 8-POLE MAGNET

  • Kim, Pill-Soo;Kim, Yong;Baek, Soo-Hyun
    • Journal of the Korean Magnetics Society
    • /
    • v.5 no.5
    • /
    • pp.828-832
    • /
    • 1995
  • This paper describes the efficient design, analysis method and experimental verification of capacitor discharge impulse magnetizer system. A capacitor discharge magnetizer system is used to produce a high current impulse of short duration in this magnetizing fixture. The parasitic resistance and parasitic inductance of the capacitor discharge impulse magnetizer system have been estimated using known air-core test coil. Finite element analysis (using MAXWELL 2-D field simulator) and magnetizing circuit analysis (using SPICE) are also used as part of the design and analysis process of the capacitor discharge impulse magnetizer system. Application study for a magnetizing fixture design is shown. 8-pole magnetizing fixture has been designed and analyzed using finite element analysis. The fixture design for 8-pole magnet are presented along with the experimental results. The experimental results have been achieved using a high-voltage, high-energy capacitor discharge impulse magnetizer and 8-pole iron core fixtures (charging voltage : 2000[V], capacitor bank : 4000[$\mu\textrm{F}$]).

  • PDF

SURFACE CHANCE OF EXTERNAL HEXAGON OF IMPLANT FIXTURE AND INTERNAL HEXAGON OF ABUTMENT AFTER REPEATED DELIVERY AND REMOVAL OF ABUTMENT (지대주의 반복적인 착탈에 따른 임플랜트 고정체의 external hexagon과 지대주 internal hexagon의 변화에 관한 연구)

  • Jung Seok-Won;Kim Hee-Jung;Chung Chae-Heon
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.43 no.4
    • /
    • pp.528-543
    • /
    • 2005
  • Statement of problem: Repeated delivery and removal of abutment cause some changes such as wear, scratch or defect of hexagonal structure. It may increase the value of rotational freedom(RF) between hexagonal structures. Purpose: The purpose of this study was to evaluate surface changes and rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment after repeated delivery and removal under SEM and toolmaker's microscope. Materials and methods: Implant systems used for this study were 3i and Avana. Seven pail's of implant fixture, abutment and abutment screws for each system were selected and all fixtures were perpendicularly mounted in liquid unsaturated polyesther with dental surveyor. Each one was embedded beneath the platform of fixture. Surfaces of hexagonal structure before repeated closing and opening of abutment were observed using SEM and rotational freedom was measured by using toolmaker's microscope. Each abutment was secured to the implant future by each abutment screw with recommended torque value using a digital torque controller and was repeatedly delivered and removed by 20 times respectively. After experiment, evaluation for the change of hexagonal structures and measurement of rotational freedom were performed. Result : The results were as follows; 1. Wear of contact area between implant fixture and abutment was considerable in both 3i and Avana system. Scratches and defects were frequently observed at the line-angle of hexagonal structures of implant fixture and abutment. 2. In the SEM view of the external hexagon of implant fixture, the point-angle areas at the corner edge of hexagon were severely worn out in both systems. It was more notable in the case of 3i systems than in that of Avana systems. 3. In the SEM view of the internal hexagon of abutment, Gingi-Hue abutment of 3i systems showed severe wear in micro-stop contacts that were machined into the corners to prevent rotation and cemented abutment of Avana systems showed wear in both surface area adjacent to the corner mating with external hexagon of implant fixture. 4 The mean values of rotational freedom between the external hexagon of the implant fixture and internal hexagon of abutment were 0.48$\pm$0.04$^{\circ}$ in pre-tested 3i systems and 1.18$\pm$0.25$^{\circ}$ after test, and 1.80$\pm$0.04$^{\circ}$ in pre-tested Avana systems and 2.61$\pm$0.16$^{\circ}$ after test. 5. Changes of rotational freedom after test shouted statistical)y a significant increase in both 3i and Avana systems(P<0.05, paired t-test). 6. Statistically, there was no significant difference between amount of increase in the rotational freedom of 3i systems and amount of increase in that of Avana ones(P>0.05, unpaired t-test). Conclusion: Conclusively, it was considered that repeated delivery and remove of abutment by 20 times would not have influence on screw joint stability. However, it caused statistically the significant change of rotational freedom in tested systems. Therefore, it is suggested that repeated delivery and remove of abutment should be minimal as possible as it could be and be done carefully Additionally, it is suggested that the means or treatment to prevent the wear of mating components should be devised.

Fatigue fracture of different dental implant system under cyclic loading (반복하중에 따른 수종 임플란트의 피로파절에 관한 연구)

  • Park, Won-Ju;Cho, In-Ho
    • The Journal of Korean Academy of Prosthodontics
    • /
    • v.47 no.4
    • /
    • pp.424-434
    • /
    • 2009
  • Statement of problem: Problems such as loosening and fractures of retained screws and fracture of implant fixture have been frequently reported in implant prosthesis. Purpose: Implant has weak mechanical properties against lateral loading compared to vertical occlusal loading, and therefore, stress analysis of implant fixture depending on its material and geometric features is needed. Material and methods: Total 28 of external hexed implants were divided into 7 of 4 groups; Group A (3i, FULL $OSSEOTITE^{(R)}$Implant), Group B (Nobelbiocare, $Br{\aa}nemark$ $System^{(R)}$Mk III Groovy RP), Group C (Neobiotec, $SinusQuick^{TM}$ EB), Group D (Osstem, US-II). The type III gold alloy prostheses were fabricated using adequate UCLA gold abutments. Fixture, abutment screw, and abutment were connected and cross-sectioned vertically. Hardness test was conducted using MXT-$\alpha$. For fatigue fracture test, with MTS 810, the specimens were loaded to the extent of 60-600 N until fracture occurred. The fracture pattern of abutment screw and fixture was observed under scanning electron microscope. A comparative study of stress distribution and fracture area of abutment screw and fixture was carried out through finite element analysis Results: 1. In Vicker's hardness test of abutment screw, the highest value was measured in group A and lowest value was measured in group D. 2. In all implant groups, implant fixture fractures occurred mainly at the 3-4th fixture thread valley where tensile stress was concentrated. When the fatigue life was compared, significant difference was found between the group A, B, C and D (P<.05). 3. The fracture patterns of group B and group D showed complex failure type, a fracture behavior including transverse and longitudinal failure patterns in both fixture and abutment screw. In Group A and C, however, the transverse failure of fixture was only observed. 4. The finite element analysis infers that a fatigue crack started at the fixture surface. Conclusion: The maximum tensile stress was found in the implant fixture at the level of cortical bone. The fatigue fracture occurred when the dead space of implant fixture coincides with jig surface where the maximum tensile stress was generated. To increase implant durability, prevention of surrounding bone resorption is important. However, if the bone resorption progresses to the level of dead space, the frequency of implant fracture would increase. Thus, proper management is needed.