• Title/Summary/Keyword: test coil

Search Result 508, Processing Time 0.035 seconds

Characteristics of Evaporation Heat Transfer in a Small-Scale Cryogenic Heat Exchange System for the Utilization of LNG Cold Energy (LNG 냉열활용을 위한 초저온 열교환시스템의 축소모형에서 증발 열전달 특성)

  • Nam S. C.;Lee S. C.;Lee Y. W.;Sohn Y. S.
    • Journal of the Korean Institute of Gas
    • /
    • v.2 no.4
    • /
    • pp.25-33
    • /
    • 1998
  • The characteristics of evaporation heat transfer for the utilization of LNG cold energy was investigated experimentally using liquified nitrogen and a solution of ethylene-glycol and water under horizontal two-phase conditions in the small-scale equipment of a cryogenic heat exchange system. The inner tubes in the double pipe heat exchanger with 8 mm and 15 mm inner diameter and 6 m length were adopted as a smooth test tubes and enhanced tubes by means of wire-coil inserts. Heat transfer coefficients and Nusselt number for the test tube were calculated from measurements of temperatures, flowrates and pressures. The correlations in a power-law relationship of the Nusselt number, the Reynolds number and Prandtl number for heat transfer were proposed which can be available for design of cryogenic heat exchangers. The correlations showed heat transfer coefficients for the wire-coil inserts were much higher than those for the smooth tubes, increased by more than 2.5 ${\~}$ 5.5 times depending upon the equivalent Reynolds number. Form and length of cryogenic double pipe heat exchanger were proposed for applicable to the utilization of LNG cold energy.

  • PDF

Drawing of Impedance Plane Diagrams of Absolute Coil ECT Signals by finite Element Analysis (유한요소해석에 의한 절대코일 와전류 신호의 임피던스 평면도 작성)

  • Shin, Young-Kil;Lee, Yun-Tai;Lee, Jeong-Ho;Song, Myung-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.24 no.4
    • /
    • pp.315-324
    • /
    • 2004
  • In eddy current testing(ECT), differential probes have been frequently used since they .an reduce the number of parameters that influence ECT signals. However, differential signal is actually the difference of the two coils' impedance so that signal prediction and interpretation are not easy, On the other hand, absolute coil signal is rather straightforward to predict and analyze. Therefore, combined use of the two types of signals would increase the test reliability. In this paper, absolute coil signals from Inconel plate and tubes are predicted by the finite element analysis and efforts of lift-off, fill-factor, conductivity, operating frequency, test specimen thickness, inner diameter defects, and outer diameter defects are investigated. As a result, various impedance plane diagrams are drawn and analyzed. Significant practical knowldege about absolute signals is accumulated and similar characteristics of the two types of signal could be understood. Finally, slope angle versus defect depth calibration corves are prepared for three different frequencies.

Temperature History of Concrete exposed to Extremely Cold Weather with the Variation of Capacity of Heating Coil (열선 전력 용량에 따른 극한온도 조건에서의 콘크리트 온도이력 특성)

  • Jung, Eun-Bong;Jung, Sang-Hyeon;Ahn, Sang-Ku;Ko, Gyeong-Taek;Han, Min-Cheol;Han, Cheon-Goo
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.11a
    • /
    • pp.51-53
    • /
    • 2012
  • This paper is to report the results of mock-up test for concrete during severe cold weather. The temperature is fixed at -20℃. The mock-up specimens were fabricated simulating slab, wall and column. Heating coil with different heat capacity with 5 W and 15 W were embedded at slab specimen. Test results revealed that at -20℃, temperature dropped below 0℃ since around 70 hours. It takes 7 days to gain 45°D·D of maturity for avoiding frost damage at early age.

  • PDF

The Temperature Distribution Analysis and Temperature Rise Test of Pole Mold Transformer (주상용 몰드변압기의 온도분포 해석과 온도상승 시험)

  • 조한구;이운용;김석수;이종득
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.780-782
    • /
    • 2001
  • The mold transformer has anti-burnt and possibility of small size contrary to oil-immersed transformer. The mold transformer has generally cooling duct between low voltage coil and high voltage coil and also made by one body molding for small size and low loss. In this paper, the temperature distribution of designed 50kVA pole mold transformer for power distribution is investigated by FEM program. The designed transformer is also manufactured and temperature rise test is carried out.

  • PDF

A Study on the Improvement of Attraction Force of Solenoid Operated Valves (솔레노이드 밸브의 흡인력 개선을 위한 연구)

  • Lim, Byung-Ju;Park, Chang-Dae;Lee, Tae-Gu;Yun, So-Nam;Chung, Kyung-Yul
    • Proceedings of the Korean Society of Marine Engineers Conference
    • /
    • 2012.06a
    • /
    • pp.121-122
    • /
    • 2012
  • In this research, we studied on improvement of the attraction force of solenoid operated valve for normal operation in harsh environment like vessel. Attraction force of the solenoid valves is effected by the B-H characteristics of magnetic material and the size of coil. In order to specify impact of the affection, we performed the B-H characteristics test and attraction force. Test results show that magnetic flux densities of the materials are difference each other more than 2 times in same magnetic intensity, and attraction force of the solenoid valve is 1.7 times difference as changes of resistance and the number of coil winding of solenoid.

  • PDF

Characteristics of an HTS SMES for Solar Power System

  • Kim Woo-Seok;Lee Seung-wook;Hahn Song-yop
    • Progress in Superconductivity and Cryogenics
    • /
    • v.7 no.2
    • /
    • pp.44-46
    • /
    • 2005
  • A SMES can be a perfect alternative energy storage device to the chemical batteries which are needed by most of the renewable energy supply systems. The chemical battery storage system is so expensive to maintain and causes another environmental problem because they are not recyclable. But, SMES has semi-permanent lifetime and no environmental problems cause it only need coolants which is non flammable, clean and recyclable gas. In order to verify the feasibility of a SMES for the renewable electrical power supply system, electrical characteristics of a test SMES coil with the photovoltaic power system were analyzed in this paper. Simulation results show that we can charge 40 amps of current in test SMES coil using solar power system. The experimental verification will be performed just after development of the peak power tracking system for the solar system.

Test of the Conduction Cooling System for HTS SMES (고온 초전도 SMES용 전도냉각시스템 특성시험)

  • Yeom, Han-Kil
    • Progress in Superconductivity and Cryogenics
    • /
    • v.10 no.1
    • /
    • pp.62-66
    • /
    • 2008
  • The characteristic of the superconducting magnetic energy storage(SMES) system is faster response, longer life time, more economical, and environment friendly than other uninterruptible power supply(UPS) using battery. So, the SMES system can be used to develop methods for improving power quality where a short interruption of power could lead to a long and costly shutdown. Recently, cryogen free SMES has developed using BSCCO(Bismuth Strontium Calcium Copper Oxide) wire. We fabricated and tested the conduction cooling system for the 600 kJ class HTS SMES. The experiment was accomplished for the simulation coils. The simulation coils were made of aluminium, it is equivalent to thermal mass of 600 kJ HTS SMES coil. The coil is cooled with two GM coolers through the copper conduction bar. In this paper, we report that the test results of cool-down and heat loads characteristics of the simulation coils. The developed conduction cooling system adapted to 600 kJ HTS SMES system and cope with the unexpected sudden heat impact, too.

Establishment of Evaluation System for 40,000 A Rogowski Coil (40,000 A 로고스키 코일 평가 시스템 구축)

  • Kim, Yoon-Hyoung;Han, Sang-Gil;Jung, Jae-Kap;Kang, Jeon-Hong;Lee, Sang-Hwa;Han, Sang-Ok
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.2
    • /
    • pp.202-206
    • /
    • 2009
  • Evaluation system for calibrating Rogowski coiI(RC) up to primary current of 40,000 A have been established. The system consists of 40,000 A AC high current source, current transformer(CT) comparator, standard CT, RC under test, voltage to current convertor(VCC), buffer and CT burden. An AC high current is applied to the primary windings of both the standard CT and the RC under test, and then the CT comparator measures the ratio error and the phase displacement by comparing the secondary current of the standard CT with output current of VCC. For testing of RC, we have evaluated two RCs under test of primary current ranges of 0 A ${\sim}$ 2,000 A and 0 A ${\sim}$ 40,000 A with the accuracy class of 1 %. The extended uncertainty is 0.02 % ${\sim}$ 0.23 % for ratio error and 0.29 min ${\sim}$ 1.93 min for phase displacement in the primary current ranges of 10 ${\sim}$ 40,000 A.

The Design and Performance Test of Mold Transformer for Outdoor Pole (50 kVA 주상용 몰드변압기의 설계 및 특성평가)

  • Cho, Han-Goo;Lee, Un-Yong;HwangBo, Kuk
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.05c
    • /
    • pp.132-137
    • /
    • 2002
  • The mold transformers have been widely used in underground substations in large building and have some advantages in comparison to oil-transformer, that is low fire risk, excellent environmental compatibility, compact size and high reliability. In addition, the application of mold transformer for outdoor is possible due to development of epoxy resin. The mold transformer generally has cooling duct between low voltage coil and high voltage coil. A mold transformer made by one body molding method has been developed for small size and low loss. The life of transformer is significantly dependent on the thermal behavior in windings. To analyse winding temperature rise, many transformer designer have calculated temperature distribution and hot spot point by finite element method(FEM). Recently, numerical analyses of transformer are studied for optimum design, that is electric field analysis, magnetic field, potential vibration, thermal distribution and thermal stress. In this paper, the temperature distribution of 50 kVA pole mold transformer for power distribution are investigated by FEM program and the temperature rise test of designed mold transformer carried out and test result is analyzed compare to simulation data. In this result, the designed mold transformer is satisfied to limit value of temperature and the other property is good such as voltage ratio, winding resistance, no-load loss, load loss, impedance voltage and percent regulation.

  • PDF