• Title/Summary/Keyword: test automation

Search Result 635, Processing Time 0.029 seconds

A Study on the Improvement of Capstone Design Learning Achievement through the Design and Fabrication of Pneumatic Control Circuit (공압제어회로 설계 및 제작을 통한 캡스톤 디자인 학습 성취도 향상 연구)

  • Lee, Jongkil
    • Journal of Practical Engineering Education
    • /
    • v.12 no.1
    • /
    • pp.1-10
    • /
    • 2020
  • The pneumatic control circuit is an important basic element that constitutes factory automation in the era of the 4th Industrial Revolution, and the ability to design and fabricate pneumatic control circuit at the university level is one of the most important educational courses. In this study, it introduced collaborative learning by group, and capstone design technique applied to the subject of design and fabricate of pneumatic control circuit. In addition, it intends to contribute to the innovation of practical engineering education by examining the learning achievement of students. It was investigated analytical skill differences by applying cooperative learning to the experimental group and by applying traditional lecture methods to the comparison group. The experimental group that conducted cooperative learning showed higher academic ability than the comparison group that conducted only traditional lectures, and the t-test results of the significant level p<0.05 also confirmed that there were significant differences between the two groups. It was also responded 13 survey questions in four experimental groups and analyzed the results, showing a high satisfaction level of 4.731 on average. Through this study the design and fabrication of the pneumatic control circuit is more effective in improving students' learning achievement when applying the capstone design technique than when operating as a normal subject and expected to use as a basic material for the development of the curriculum of Capstone design in the future.

Evaluation of a Sample-Pooling Technique in Estimating Bioavailability of a Compound for High-Throughput Lead Optimazation (혈장 시료 풀링을 통한 신약 후보물질의 흡수율 고효율 검색기법의 평가)

  • Yi, In-Kyong;Kuh, Hyo-Jeong;Chung, Suk-Jae;Lee, Min-Haw;Shim, Chang-Koo
    • Journal of Pharmaceutical Investigation
    • /
    • v.30 no.3
    • /
    • pp.191-199
    • /
    • 2000
  • Genomics is providing targets faster than we can validate them and combinatorial chemistry is providing new chemical entities faster than we can screen them. Historically, the drug discovery cascade has been established as a sequential process initiated with a potency screening against a selected biological target. In this sequential process, pharmacokinetics was often regarded as a low-throughput activity. Typically, limited pharmacokinetics studies would be conducted prior to acceptance of a compound for safety evaluation and, as a result, compounds often failed to reach a clinical testing due to unfavorable pharmacokinetic characteristics. A new paradigm in drug discovery has emerged in which the entire sample collection is rapidly screened using robotized high-throughput assays at the outset of the program. Higher-throughput pharmacokinetics (HTPK) is being achieved through introduction of new techniques, including automation for sample preparation and new experimental approaches. A number of in vitro and in vivo methods are being developed for the HTPK. In vitro studies, in which many cell lines are used to screen absorption and metabolism, are generally faster than in vivo screening, and, in this sense, in vitro screening is often considered as a real HTPK. Despite the elegance of the in vitro models, however, in vivo screenings are always essential for the final confirmation. Among these in vivo methods, cassette dosing technique, is believed the methods that is applicable in the screening of pharmacokinetics of many compounds at a time. The widespread use of liquid chromatography (LC) interfaced to mass spectrometry (MS) or tandem mass spectrometry (MS/MS) allowed the feasibility of the cassette dosing technique. Another approach to increase the throughput of in vivo screening of pharmacokinetics is to reduce the number of sample analysis. Two common approaches are used for this purpose. First, samples from identical study designs but that contain different drug candidate can be pooled to produce single set of samples, thus, reducing sample to be analyzed. Second, for a single test compound, serial plasma samples can be pooled to produce a single composite sample for analysis. In this review, we validated the issue whether the second method can be applied to practical screening of in vivo pharmacokinetics using data from seven of our previous bioequivalence studies. For a given drug, equally spaced serial plasma samples were pooled to achieve a 'Pooled Concentration' for the drug. An area under the plasma drug concentration-time curve (AUC) was then calculated theoretically using the pooled concentration and the predicted AUC value was statistically compared with the traditionally calculated AUC value. The comparison revealed that the sample pooling method generated reasonably accurate AUC values when compared with those obtained by the traditional approach. It is especially noteworthy that the accuracy was obtained by the analysis of only one sample instead of analyses of a number of samples that necessitates a significant man-power and time. Thus, we propose the sample pooling method as an alternative to in vivo pharmacokinetic approach in the selection potential lead(s) from combinatorial libraries.

  • PDF

Position Control of a Pneumatic Cylinder Actuator using PLC and Proximity Sensors (공압 실린더 액츄에이터 위치제어)

  • Kwon, Soon-Hong;Choi, Won-Sik;Chung, Sung-Won;Park, Jong-Min;Kwon, Soon-Goo;So, Jung-Duk
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.10 no.6
    • /
    • pp.50-55
    • /
    • 2011
  • The fluid power products are widely used in current industrial area such as automation of products and equipment assembly, high-tech machine tool, aircraft, train, and etc. As the development of industry is in progress, the development of the fluid power products is demanding and it is required in every industrial area. This research proposed a pneumatic system to evaluate displacement accuracy of the pneumatic actuator without external load and to analyze capability of integration of the valve system. The pneumatic system consisted of a combination of pneumatic actuator, four two-port valves, two three-port valves, two pressure valve, a check valve, two proximity sensors, and a program logic controller (PLC). The position controller is based on the PLC connected with the proximity sensors. The maximum air pressure applied for tests was $49.05N/cm^2$ and the displacement accuracy of a stroke was measured using a dial gauge. The supply- and discharge-side of air pressure and the length of the stroke of the pneumatic cylinder were varied The test of the position control of the pneumatic cylinder was carried out 50 times at each supply- and discharge-side air pressure of 24.53/34.34, 29.43/39.24, 34.34/44.15, and $39.24/49.05N/cm^2$ and replicated three times. The accuracy of the displacement of the pneumatic cylinder stroke increased as the supply- and discharge-side of air pressure increased with the stroke length of 133mm. Also the displacement accuracy increased as the stroke length increased with the fixed supply- and discharge-side of air pressure of the pneumatic cylinder as 34.34 and $44.15N/cm^2$, respectively. The most accurate displacement of the pneumatic cylinder was obtained at the supplyand discharge-side of air pressure of 39.24 and $49.05N/cm^2$, respectively, and strokes of 170 and 190mm.

Evaluation of Waterway Dredging Work using Spud Dredge Process Management System (스퍼드 준설선 공정관리시스템을 이용한 항로준설작업의 평가)

  • Lee Joong-Woo;Jeong Dae-Deuk;Cho Jueng-Eon;Kim Ju-Young;Oh Dong-Hoon
    • Journal of Navigation and Port Research
    • /
    • v.29 no.5 s.101
    • /
    • pp.395-402
    • /
    • 2005
  • The most important point when we engage on waterway dredging work is supplying safe navigational passage to the vessels underway by narrowing dredge work area and removing submerged dangers. In order to meet this end it is necessary to use auxiliary equipment for shifting actively and mooring and adopt automation of dredging work by integrating information on real time position, dredging depth, and work information. The dredger with a spud control system in this study, by the way, is able to employed on continuous dredging work with the narrowest working area allowing wide and safe passages to vessels underway, by moving the dredger to the working zone with the spud controlled automatically. Furthermore, it has been improved definitely compared with the existing dredging process management system such that it shows the track of spud and working depth on the electronic navigation chart of window, together with the final outcome of dredging work. The test dredging work at the entrance of Busan North Port for system evaluation showed that actual working time available was twice of the one by the existing anchor system, and that it reduced $38\%$ of time for preparation work and one man power.

Automatic Detection of Usability Issues on Mobile Applications (모바일 앱에서의 사용자 행동 모델 기반 GUI 사용성 저해요소 검출 기법)

  • Ma, Kyeong Wook;Park, Sooyong;Park, Soojin
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.7
    • /
    • pp.319-326
    • /
    • 2016
  • Given the attributes of mobile apps that shorten the time to make purchase decisions while enabling easy purchase cancellations, usability can be regarded to be a highly prioritized quality attribute among the diverse quality attributes that must be provided by mobile apps. With that backdrop, mobile app developers have been making great effort to minimize usability hampering elements that degrade the merchantability of apps in many ways. Most elements that hamper the convenience in use of mobile apps stem from those potential errors that occur when GUIs are designed. In our previous study, we have proposed a technique to analyze the usability of mobile apps using user behavior logs. We proposes a technique to detect usability hampering elements lying dormant in mobile apps' GUI models by expressing user behavior logs with finite state models, combining user behavior models extracted from multiple users, and comparing the combined user behavior model with the expected behavior model on which the designer's intention is reflected. In addition, to reduce the burden of the repeated test operations that have been conducted by existing developers to detect usability errors, the present paper also proposes a mobile usability error detection automation tool that enables automatic application of the proposed technique. The utility of the proposed technique and tool is being discussed through comparison between the GUI issue reports presented by actual open source app developers and the symptoms detected by the proposed technique.

A Problematic Bubble Detection Algorithm for Conformal Coated PCB Using Convolutional Neural Networks (합성곱 신경망을 이용한 컨포멀 코팅 PCB에 발생한 문제성 기포 검출 알고리즘)

  • Lee, Dong Hee;Cho, SungRyung;Jung, Kyeong-Hoon;Kang, Dong Wook
    • Journal of Broadcast Engineering
    • /
    • v.26 no.4
    • /
    • pp.409-418
    • /
    • 2021
  • Conformal coating is a technology that protects PCB(Printed Circuit Board) and minimizes PCB failures. Since the defects in the coating are linked to failure of the PCB, the coating surface is examined for air bubbles to satisfy the successful conditions of the conformal coating. In this paper, we propose an algorithm for detecting problematic bubbles in high-risk groups by applying image signal processing. The algorithm consists of finding candidates for problematic bubbles and verifying candidates. Bubbles do not appear in visible light images, but can be visually distinguished from UV(Ultra Violet) light sources. In particular the center of the problematic bubble is dark in brightness and the border is high in brightness. In the paper, these brightness characteristics are called valley and mountain features, and the areas where both characteristics appear at the same time are candidates for problematic bubbles. However, it is necessary to verify candidates because there may be candidates who are not bubbles. In the candidate verification phase, we used convolutional neural network models, and ResNet performed best compared to other models. The algorithms presented in this paper showed the performance of precision 0.805, recall 0.763, and f1-score 0.767, and these results show sufficient potential for bubble test automation.

Eco-friendliness Evaluation of a Low-Noise and Dust-Recovery Type Pavement Cutter (저소음·분진회수형 도로절단기의 친환경성 평가)

  • Kim, Kyoon Tai
    • Ecology and Resilient Infrastructure
    • /
    • v.8 no.4
    • /
    • pp.194-203
    • /
    • 2021
  • With the recent increase in maintenance works on water and sewer pipes as well as district heating supply pipes, pavement cutting work using pavement cutter is on the rise. The pavement cutting operation generates considerable dust (cutting sludge) as well as noise; therefore, it is necessary to apply eco-friendly technologies that have low noise and dust recovery capability. Thus far, various equipment for recovering dust have been developed; however, there is a limitation in that the environmental friendliness is not quantified. Therefore, in this study, we developed a low-noise, dust-recovery type pavement cutter that can fundamentally remove the causes of environmental hazards such as noise and dust and evaluated the eco-friendliness of the pavement cutting process performed by this cutter. To this end, an integrated water cooling-sludge recovery system composed of a vacuum device and a sludge suction unit was developed, and the developed system was applied to a pavement cutter. Subsequently, the developed equipment was applied to the test bed, and data related to its eco-friendliness were collected and evaluated. The results showed that the cutting sludge recovery rate of the developed equipment was greater than 83%, the noise level was approximately 82 - 83 dB, and the sound power level was 115 dB. The results of this study will be used as basic data to develop improved pavement cutters in the future with improved cutting sludge recovery performance and lower noise.

Deep Learning based Fish Object Detection and Tracking for Smart Aqua Farm (스마트 양식을 위한 딥러닝 기반 어류 검출 및 이동경로 추적)

  • Shin, Younghak;Choi, Jeong Hyeon;Choi, Han Suk
    • The Journal of the Korea Contents Association
    • /
    • v.21 no.1
    • /
    • pp.552-560
    • /
    • 2021
  • Currently, the domestic aquaculture industry is pursuing smartization, but it is still proceeding with human subjective judgment in many processes in the aquaculture stage. The prerequisite for the smart aquaculture industry is to effectively grasp the condition of fish in the farm. If real-time monitoring is possible by identifying the number of fish populations, size, pathways, and speed of movement, various forms of automation such as automatic feed supply and disease determination can be carried out. In this study, we proposed an algorithm to identify the state of fish in real time using underwater video data. The fish detection performance was compared and evaluated by applying the latest deep learning-based object detection models, and an algorithm was proposed to measure fish object identification, path tracking, and moving speed in continuous image frames in the video using the fish detection results. The proposed algorithm showed 92% object detection performance (based on F1-score), and it was confirmed that it effectively tracks a large number of fish objects in real time on the actual test video. It is expected that the algorithm proposed in this paper can be effectively used in various smart farming technologies such as automatic feed feeding and fish disease prediction in the future.

Connectivity Verification and Noise Reduction Analysis of Smart Safety Helmet for Shipyard Worker (조선소 작업자를 위한 스마트 안전모의 커넥티비티 검증 및 소음저감 분석)

  • Park, Junhyeok;Heo, Junyeoung;Lee, Sangbok;Park, Jaemun;Park, Jun-Soo;Lee, Kwangkook
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.1
    • /
    • pp.28-36
    • /
    • 2022
  • Currently, the automation and intelligence of the shipbuilding industry have improved its work production capacity and cost competitiveness, but the reduction rate of safety accidents among industrial site workers is still low and the damage caused by safety accidents is very serious, so there is a need for improvement according to the workplace. This research aims to demonstrate the connectivity between smart safety helmets in the demonstration area to verify the effectiveness along with the development of smart helmets for worker protection and environmental safety in shipyards. For efficient communication between workers, impact noise of over 95dB was confirmed in the workplace, and noise reduction was required. To solve this problem, the filtering performance was compared and analyzed using the Butterworth, Chebyshev, and elliptic algorithms. The connectivity test and noise reduction method between smart helmets proposed in this study will increase the usability and safety of the field through the development of advanced smart helmets tailored to the shipbuilding workplace in the future.

Program Development and Field Application for the use of the Integration Map of Underground Spatial Information (지하공간통합지도 활용을 위한 프로그램 개발 및 현장 적용)

  • Kim, Sung Gil;Song, Seok Jin;Cho, Hae Yong;Heo, Hyun Min
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.39 no.6
    • /
    • pp.483-490
    • /
    • 2021
  • Due to the recent increase in various problems from underground development in urbanized areas, accurate underground facility information management is highly needed. Therefore, in this study, in order to utilize the Integration Map of Underground Goespatial Information in real time on-site, the function of comparing the mutual location of the GPR (Ground Penetration Radar) sensing data and the Integration Map of Underground Goespatial Information, and function of analyze underground facilities, and function of converting surveying data into a shape file through position correction & attribute editing in a 3D space, and the function of submitting the shape file to the Integration Map of Underground Goespatial Information mobile center was defined and developed as a program. In addition, for the on-site application test of the development program, scenarios used at the underground facility real-time survey site and GPR exploration site were derived, and four sites in Seoul were tested to confirm that the use scenario worked properly. Through this, the on-site utilization of the program developed in this study could be confirmed, and it would contribute to the confirmation of the quality of Shape-file and the "update automation" of "Integration Map of Underground Goespatial Information". In addition, it is expected that the development program will be further applied to the Underground Facility Map's Accuracy Improvement Diffusion Project' promoted by the MOLIT (Ministry of Land, Infrastructure, and Transport).