• Title/Summary/Keyword: tertiary butyl hydroperoxide

Search Result 4, Processing Time 0.023 seconds

Protective Effect of Stilbenes on Oxidative Damage

  • Na, Min-Kyun;Min, Byung-Sun;Bae, Ki-Hwan
    • Natural Product Sciences
    • /
    • v.13 no.4
    • /
    • pp.369-372
    • /
    • 2007
  • Oxidative stress induced by reactive oxygen species (ROS) has been suggested to be the cause of various degenerative diseases as well as aging. To evaluate the antioxidant potential of stilbenes, we have investigated the cytoprotective effect of 10 stilbenes derived from plants on the oxidative stress induced by tertiary butyl hydroperoxide (t-BuOOH). Of the stilbenes tested, piceatannol (3) showed the most potent activity, which was further investigated using an animal model. When 3 (30 or 10 mg/kg) was topically administered prior to UVB irradiation, the amount of the thiobarbituric acid reactive substances (TBARS) was significantly reduced compared to that of the control (vehicle). Our findings suggest that piceatannol is capable of protecting cells and tissues from oxidative stress.

Protective Effects of Acanthoic acid on Tertiary-Butyl Hydroperoxide or Carbon tetrachloride-Induced Liver Injury

  • Park, Eun-Jeon;Nan, Ji-Xing;Zhao, Yu-Zhe;Lee, Sung-Hee;Kim, Young-Ho;Nam, Jeong-Bum;Lee, Jung-Joon;Sohn, Dong-Hwan
    • Proceedings of the PSK Conference
    • /
    • 2003.04a
    • /
    • pp.298.1-298.1
    • /
    • 2003
  • The aim of this study was to investigate the protective effect of acanthoic acid on liver injury induced by either tertiary-butyl hydroperoxide (tBH) or carbon tetrachloride in vitro and in vivo. Acanthoic acid, (-)-pimara-9(11),15-diene-19-oic acid, is a diterpene isolated from the root bark of Acanthopanax koreanum. In in vitro study, the cellular leakage of lactate dehydrogenase (LDH) with 1.5 mM tBH for 1 j, were significantly inhibited by treatment with acanthoic acid(25 and 5mg/mL). (omitted)

  • PDF

Cytoprotective effect exerted by geraniin in HepG2 cells is through microRNA mediated regulation of BACH-1 and HO-1

  • Aayadi, Hoda;Mittal, Smriti P.K.;Deshpande, Anjali;Gore, Makarand;Ghaskadbi, Saroj S.
    • BMB Reports
    • /
    • v.50 no.11
    • /
    • pp.560-565
    • /
    • 2017
  • Geraniin, a hydrolysable tannin, used in traditional medicine in Southeast Asia, is known to exhibit various biological activities. As an antioxidant it is known to up-regulate phase II enzyme Heme oxygenase-1 (HO-1). However its mechanism is not clearly understood. Nuclear factor erythroid-derived 2 related factor 2 (Nrf-2) is transcriptionally up-regulated by Extracellular signal-regulated kinase (ERK) 1/2 and retained in nucleus due to inactivated Glycogen synthase kinase 3 beta ($GSK-3{\beta}$). Geraniin additionally down-regulates expression of microRNA 217 and 377 (miR-217 and miR-377) which target HO-1 mRNA. Expression of BTB and CNC homolog 1 (BACH-1), another regulator of HO-1, is also down-regulated by up-regulating microRNA 98 (miR-98), a negative regulator of BACH-1. Thus, geraniin up-regulates HO-1 expression both through activating its positive regulator Nrf-2 and by down-regulating its negative regulator BACH-1. Up-regulation of HO-1 also confers protection to HepG2 cells from tertiary butyl hydroperoxide (TBH) induced cytotoxicity.

Comparative Evaluation of Antioxidant Activities of Ethanol Extracts and Their Solvent Fractions Obtained from Selected Miscellaneous Cereal Grains (잡곡 유래 에탄올 추출물 및 이의 유기용매 분획들의 항산화 활성 비교평가)

  • Park, Dong Hwa;Lee, Seung Tae;Jun, Do Youn;Lee, Ji Young;Woo, Mi Hee;Kim, Ki Young;Seo, Myung Chul;Ko, Jee Yeon;Woo, Koan Sik;Jung, Tae Wook;Kwak, Do Yeon;Nam, Min Hee;Kim, Young Ho
    • Journal of Life Science
    • /
    • v.24 no.1
    • /
    • pp.26-38
    • /
    • 2014
  • To examine the antioxidant activities of 11n selected miscellaneous cereal grains (proso millet, yellow glutinous proso millet, hwanggeumchal sorghum, glutinous sorghum, white glutinous sorghum, yellow glutinous foxtail millet, nonglutinous foxtail millet, green glutinous foxtail millet, golden foxtail millet, barnyard millet, and adlay), the free radical-scavenging activities of 80% ethanol extracts of the individual grains were investigated using 1,1-diphenyl-2-picryl-hydrazl (DPPH) and 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) methods. The ethanol extracts of hwanggeumchal sorghum, glutinous sorghum, and barnyard millet grains exhibited more potent free radical-scavenging activities as compared to the other grains. When these three ethanol extracts were sequentially fractionated with n-hexane, methylene chloride, ethyl acetate, and n-butanol, the majority of the antioxidant activities were detected in the ethyl acetate and butanol fractions in which phenolic ingredients were abundant. The ethyl acetate and butanol fractions of hwanggeumchal sorghum and the ethyl acetate fraction of glutinous sorghum showed higher antioxidant activity than that of ${\alpha}$-tocopherol. Both ferric thiocyanate (FTC) and thiobarbituric acid (TBA) methods demonstrated that these organic solvent fractions could inhibit lipid peroxidation. The ethyl acetate fractions from hwanggeumchal sorghum, glutinous sorghum, and barnyard millet grains could suppress tertiary-butyl hydroperoxide (TBHP)-induced apoptotic events, including sub-G1 peaks, ${\Delta}{\Psi}m$ loss, activation of caspase-9 and caspase-3, and cleavage of PARP and lamin B, in human HL-60 cells. These results show that the grains of hwanggeumchal sorghum (Sorghum bicolor L. Moench cv. Hwanggeumchalsusu), glutinous sorghum (Sorghum bicolor L. Moench cv. Chalsusu), and barnyard millet (Echinochloa esculenta) possess efficient antioxidant activity, which could protect cells from oxidative stress-mediated cytotoxicity.