• Title/Summary/Keyword: terrestrial lidar

Search Result 24, Processing Time 0.02 seconds

Classification of Terrestrial LiDAR Data Using Factor and Cluster Analysis (요인 및 군집분석을 이용한 지상 라이다 자료의 분류)

  • Choi, Seung-Pil;Cho, Ji-Hyun;Kim, Yeol;Kim, Jun-Seong
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.19 no.4
    • /
    • pp.139-144
    • /
    • 2011
  • This study proposed a classification method of LIDAR data by using simultaneously the color information (R, G, B) and reflection intensity information (I) obtained from terrestrial LIDAR and by analyzing the association between these data through the use of statistical classification methods. To this end, first, the factors that maximize variance were calculated using the variables, R, G, B, and I, whereby the factor matrix between the principal factor and each variable was calculated. However, although the factor matrix shows basic data by reducing them, it is difficult to know clearly which variables become highly associated by which factors; therefore, Varimax method from orthogonal rotation was used to obtain the factor matrix and then the factor scores were calculated. And, by using a non-hierarchical clustering method, K-mean method, a cluster analysis was performed on the factor scores obtained via K-mean method as factor analysis, and afterwards the classification accuracy of the terrestrial LiDAR data was evaluated.

Study on terrestrial LIDAR transmitter designed to improve accuracy (측량용 레이저 스캐너의 정밀도 개선을 위한 송신부설계)

  • Yoo, Hyun-Kuk;Jeong, Jung-Yeon;Oh, Dong-Geun;Kim, Jae-Soon
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2009.04a
    • /
    • pp.41-48
    • /
    • 2009
  • Laser diode is used as a crucial part for minimization of terrestrial 3D Laser Scanner. But it has certain limitations such as oval beam shape and inevitable astigmatism. In order to realize a parallel light with beam divergence below 1 mrad, These problems of laser diode can be solved through beam shaping by Pinhole and Aperture. Finally, this study could materialize a collimated beam with 0.3 mrad beam divergence angle and 3mm diameter, that performance and checked by using real manufacture.

  • PDF

A Framework for Building Reconstruction Based on Data Fusion of Terrestrial Sensory Data

  • Lee, Impyeong;Choi, Yunsoo
    • Korean Journal of Geomatics
    • /
    • v.4 no.2
    • /
    • pp.39-45
    • /
    • 2004
  • Building reconstruction attempts to generate geometric and radiometric models of existing buildings usually from sensory data, which have been traditionally aerial or satellite images, more recently airborne LIDAR data, or the combination of these data. Extensive studies on building reconstruction from these data have developed some competitive algorithms with reasonable performance and some degree of automation. Nevertheless, the level of details and completeness of the reconstructed building models often cannot reach the high standards that is now or will be required by various applications in future. Hence, the use of terrestrial sensory data that can provide higher resolution and more complete coverage has been intensively emphasized. We developed a fusion framework for building reconstruction from terrestrial sensory data, that is, points from a laser scanner, images from digital camera, and absolute coordinates from a total station. The proposed approach was then applied to reconstructing a building model from real data sets acquired from a large complex existing building. Based on the experimental results, we assured that the proposed approach cam achieve high resolution and accuracy in building reconstruction. The proposed approach can effectively contribute in developing an operational system producing large urban models for 3D GIS with reasonable resources.

  • PDF

Applicability of Projective Transformation for Constructing Correspondences among Corners in Building Facade Imagery (건물벽면 영상내 코너점의 대응관계 구성을 위한 사영변환행렬의 적용성)

  • Seo, Suyoung
    • Korean Journal of Remote Sensing
    • /
    • v.30 no.6
    • /
    • pp.709-717
    • /
    • 2014
  • The objective of this study is to analyze the degree of correspondences among corners found in building facade imagery when the projective transformation parameters are applied to. Additionally, an appropriate corner detection operator is determined through experiments. Modeling of the shape of a building has been studied in numerous approaches using various type of data such as aerial imagery, aerial lidar scanner imagery, terrestrial imagery, and terrestrial lidar imagery. This study compared the Harris operator with FAST operator and found that the Harris operator is superior in extracting major corner points. After extracting corners using the Harris operator and assessing the degree of correspondence among corners in difference images, real corresponding corners were found to be located in the closest distance. The experiment of the projective transformation with varying corners shows that more corner control points with a good distribution enhances the accuracy of the correspondences.

The Distribution and Geomorphic Change of Debris Slope at Ongjeom-ri in Cheongsong-gun (청송군 옹점리 일대 암설 사면의 분포와 지형 변화)

  • Lee, Gwang-Ryul;Park, Han-San
    • Journal of the Korean Geographical Society
    • /
    • v.45 no.3
    • /
    • pp.360-374
    • /
    • 2010
  • The distributions, factors, and vegetation covers of debris slopes and changes of debris at the eastern Ongjeom-ri, Cheongsong-gun are analyzed. The important factors influencing on the developments of the slopes are felsites having advantages to the developments of cliffs and supply of enough debris, and the relatively long days below zero temperatures promoting the physical weathering processes. The distributional areas of the slopes at southern and western slopes are more extensive than those of northern and eastern slopes due to the active water evaporation by high insolation. The Ga area at eastern Ongjeom-ri has experienced the steady decreases of area of the slopes due to the vegetation covers and shows the increasing rates of vegetation covers of $431.0m^2/yr$ as averaged values. However, it is estimated at the Na area using terrestrial LIDAR that 1 or 2 debris were moved or displaed per year in slope.

Monitoring of the Natural Terrain Behavior Using the Terrestrial LiDAR (지상라이다 자료를 이용한 자연사면의 변위 모니터링)

  • Park, Jae Kook;Lee, Sang Yun;Yang, In Tae;Kim, Dong Moon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.2D
    • /
    • pp.191-198
    • /
    • 2010
  • The displacement of slope is a key factor in predicting the risk of a landslide. Therefore, the slope displacement should be continuously observed with high accuracy. Recently, high-tech equipment such as optical fiber sensor, GPS, total station and measuring instrument have been used. However, such equipment is poorly used in fields due to economics, environment, convenience and management. Because of this, development of substantial observational techniques for varied slope observation and field applications is needed. This study analyzed the possibility of terrestrial LiDAR for slope monitoring and suggested it as information-obtaining technique for slope investigation and management. For that, this study evaluated the monitoring accuracy of terrestrial LiDAR and performed GRID analysis to read the displacement area with the naked eye. In addition, it suggested a methodology for slope monitoring.

Assessment Model for the Safety and Serviceability of Structures using Terrestrial LiDAR (지상라이다를 이용한 구조물의 안전 및 사용성 평가 모델)

  • Lee, Hong-Min;Park, Hyo-Seon
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.6 no.3 s.22
    • /
    • pp.17-28
    • /
    • 2006
  • Structural health monitoring is important to maintain the safety and serviceability of the structures. The displacement in the structure should be precisely and frequently monitored because it is a direct assessment index indicating its stiffness. However, no practical method has been developed to monitor such displacement precisely, particularly for high-rise buildings and long span bridges because they cannot be easily accessible. To overcome such difficult accessibility, we propose to use a LIDAR system that remotely samples the surface of an object using laser pulses and generates the coordinates of numerous points on the surface. In this study, using terrestrial LiDAR, we develop a novel displacement measuring model for structural health monitoring and perform an indoor experiment to prove its performance.

A Study on the Development of an Indoor Positioning Support System for Providing Landmark Information (랜드마크 정보 제공을 위한 실내위치측위 지원 시스템 구축에 관한 연구)

  • Ock-Woo NAM;Chang-Soo SHIN;Yun-Soo CHOI
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.26 no.4
    • /
    • pp.130-144
    • /
    • 2023
  • Recently, various positioning technologies are being researched based on signal-based positioning and image-based positioning to obtain accurate indoor location information. Among these, various studies are being conducted on image positioning technology that determines the location of a mobile terminal using images acquired through cameras and sensor data collected as needed. For video-based positioning, a method of determining indoor location is used by matching mobile terminal photos with virtual landmark images, and for this purpose, it is necessary to build indoor spatial information about various landmarks such as billboards, vending machines, and ATM machines. In order to construct indoor spatial information on various landmarks, a panoramic image in the form of a road view and accurate 3D survey results were obtained through c 13 buildings of the Electronics and Telecommunications Research Institute(ETRI). When comparing the 3D total station final result and the terrestrial lidar panoramic image coordinates, the coordinates and distance performance were obtained within about 0.10m, confirming that accurate landmark construction for use in indoor positioning was possible. By utilizing these terrestrial lidar achievements to perform 3D landmark modeling necessary for image positioning, it was possible to more quickly model landmark information that could not be constructed only through 3D modeling using existing as-built drawings.

Analysis of Slope Fracturing using a Terrestrial LiDAR (지상라이다를 이용한 사면파괴 거동분석)

  • Yoo, Chang-Ho;Choi, Yun-Soo;Kim, Jae-Myeong
    • Spatial Information Research
    • /
    • v.16 no.3
    • /
    • pp.279-290
    • /
    • 2008
  • Landslide, one of the serious natural disasters, has Incurred a large loss of human and material resources. Recently, many forecasting or alarm systems based on various kinds of measuring equipment have been developed to reduce the damage of landslide. However, only a few of these equipments are guaranteed to evaluate the safety of whole side of land slope with their accessibility to the slope. In this study, we performed some experiments to evaluate the applicability of a terrestrial LiDAR as a surveying tool to measure the displacement of a land slope surface far a slope collapsing protection system. In the experiments, we had applied a slope stability method to a land slope and then forced to this slope with a load increasing step by step. In each step, we measured the slope surface with both a total station and a terrestrial LiDAR simultaneously. As the result of Slope Fracturing analysis using all targets, the LiDAR system showed that three was 1cm RMSE on X-axis, irregularity errors on Y-axis and few errors on Z-axis compare with Total Station. As the result of Slope Fracturing analysis using continuous targets, the pattern of Slope Fracturing was different according to the location of continuous targets and we could detect a continuous change which couldn't be found using Total station. The accuracy of the LiDAR data was evaluated to be comparable to that of the total station data. We found that a LiDAR system was appropriate to measuring the behaviour of land slope. The LiDAR data can cover the whole surface of the land slope, whereas the total station data are available on a small number of targets. Moreover, we extracted more detail information about the behavior of land slope such as the volume and profile changes using the LiDAR data.

  • PDF

Application of Terrestrial LiDAR for Displacement Detecting on Risk Slope (위험 경사면의 변위 검출을 위한 지상 라이다의 활용)

  • Lee, Keun-Wang;Park, Joon-Kyu
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.20 no.1
    • /
    • pp.323-328
    • /
    • 2019
  • In order to construct 3D geospatial information about the terrain, current measurement using a total station, remote sensing, GNSS(Global Navigation Satellite System) have been used. However, ground survey and GNSS survey have time and economic disadvantages because they have to be surveyed directly in the field. In case of using aerial photographs and satellite images, these methods have the disadvantage that it is difficult to obtain the three-dimensional shape of the terrain. The terrestrial LiDAR can acquire 3D information of X, Y, Z coordinate and shape obtained by scanning innumerable laser pulses at densely spaced intervals on the surface of the object to be observed at high density, and the processing can also be automated. In this study, terrestrial LiDAR was used to analyze slope displacement. Study area slopes were selected and data were acquired using LiDAR in 2016 and 2017. Data processing has been used to generate slope cross section and slope data, and the overlay analysis of the generated data identifies slope displacements within 0.1 m and suggests the possibility of using slope LiDAR on land to manage slopes. If periodic data acquisition and analysis is performed in the future, the method using the terrestrial lidar will contribute to effective risk slope management.